

Dec14-08 Powering the

PUMA

Final Document

Team Members:

Matt Bogenschultz

Alex Grieve

Nhat Pham

Seth Taylor

Zeyu Zhang

Client/Advisor:
Dr. Greg Luecke

Revision History

Version Description Date

1.0 Initial design document written March 11, 2014

1.1 Revisions for first semester version April 16, 2014

2.0 Revisions for final version November 28, 2014

Table of Contents
Project Introduction ... 1

Acronym Definitions .. 1

Background ... 1

Project Statement .. 1

Concept Diagram .. 2

System Requirements.. 2

Functional ... 2

Non-Functional ... 2

System Design .. 4

Primary Circuit Block Diagram .. 4

Linux Computer .. 5

MOTENC-Lite 4-Axis Motion Control & Data Acquisition PCI Board (MOTENC) 5

Pulse Width Modulated (PWM) Control ... 5

H-Bridges .. 5

Motor Power Supply ... 5

PUMA ... 5

Auxiliary Power & Secondary Circuit Block Diagram .. 6

Power Entry Module ... 6

Circuit Breakers .. 6

Control Relays .. 6

Auxiliary Circuit Power .. 6

Cooling Fans ... 7

Status Circuit .. 7

Electromagnetic Brake .. 7

Additional Specifications .. 8

User Interface .. 8

Linux Computer .. 8

Controller .. 8

I/O ... 8

Input .. 8

Output ... 8

Hardware ... 8

PUMA 560 (x2) ... 8

MOTENC-Lite (x2) ... 8

PWM Circuits (x6) .. 8

H-Bridges (x6) .. 8

Power .. 9

Circuit Breakers .. 9

Control Relays .. 9

Operator Switches/Buttons ... 10

Indicators .. 10

Cables ... 10

Terminal Blocks .. 11

Software .. 11

Primary functions .. 11

Helper functions .. 11

Design Documents ... 12

C Code Design .. 12

PWM Design ... 12

H-Bridge Design ... 14

Status Circuit Design .. 18

Electromagnetic Brake Release Design .. 21

Main Board Design ... 23

General PCB Design ... 23

Power Delivery Design ... 24

Enclosure Design .. 27

Testing Procedures and Results ... 28

MOTENC-Lite DAQ .. 28

Procedure .. 28

Results ... 28

C library .. 28

Procedure .. 28

Results ... 28

PWM Control .. 28

Procedure .. 28

Results ... 29

H-Bridge ... 29

Procedure .. 29

Results ... 29

Power Delivery ... 29

Procedure .. 29

Results ... 30

Status Circuit ... 30

Procedure .. 30

Results ... 30

System Integration .. 30

Procedure .. 30

Results ... 30

Appendix I: Operation Manual ... 32

Electromagnetic Brake Operation ... 32

Front Panel ... 32

Computer Interface ... 32

Motor Operation.. 32

Appendix II: Initial Design Versions .. 34

Old H-bridge Eagle CAD Drawing... 34

Appendix III: Other Considerations ... 35

PWM Circuit ... 35

H-Bridge Circuit ... 35

Status Circuit ... 36

Common Reference Voltage ... 36

Appendix IV: Bill of Materials .. 37

PWM Control Circuits Parts List .. 37

H-Bridges Parts List .. 37

Status Circuits Parts List ... 37

Main Board Parts List ... 38

Power Delivery Parts List ... 38

Enclosure, Wire, Miscellaneous Parts List ... 39

Appendix V: C Code ... 41

Puma_config.h .. 41

Puma.h .. 42

Puma.c ... 45

Skel.c ... 57

Appendix VI: Enclosure Drawings ... 59

Front Panel .. 60

Rear Panel ... 61

Left Panel .. 62

Right Panel .. 63

DIN Rail View .. 64

Front Panel Hole Locations .. 65

Back Panel Hole Locations ... 66

Left Panel Hole Locations .. 67

Right Panel Hole Locations .. 68

Appendix VII: Electrical Schematics .. 69

Cover Sheet ... 70

BOM ... 71

Excelsys .. 72

Meanwell... 73

Control Relays .. 74

Main Board ... 75

MOTENC 1 and 2 ... 76

J1 and J2 PCBs.. 77

J3 and J4 PCBs.. 78

J5 and J6 PCBs.. 79

EM Brake .. 80

Harness Adapter .. 81

LED Display ... 82

1

Project Introduction

Acronym Definitions

CAD – Computer-Aided Design
EM – Electromagnetic or Electromechanical
EMI – Electromagnetic Interference
I/O – Input/Output
IEC – International Electrotechnical Commision
LED – Light Emitting Diode
MOSFET – Metal-Oxide-Semiconductor Field-Effect transistor
NEMA – National Electrical Manufacturers Association
PCB – Printed Circuit Board
PCI – Peripheral Component Interconnect
PEM – Power Entry Module
PMDC – Permanent Magnet DC Motor
PUMA – Programmable Universal Manipulation Arm
PWM – Pulse Width Modulation
SMPS – Switched-Mode Power Supply
VAL – Variable Assembly Language

 Background

The Unimation Programmable Universal Manipulation Arm (PUMA) is an industrial robotic arm

with six degrees of freedom (i.e. six moveable joints). The PUMA system consists of a main

control unit that sends commands to and samples feedback from sensors in the mechanical joints.

The control unit also supports two mechanisms to program the PUMA. First, a teach pendant is

utilized to manipulate the six joints and record their positions. Second, there is a terminal

interface where the PUMA can be programmed in the VAL computer language. The control unit

has a floppy disk drive for storing and loading programs.

Project Statement

Our client, Dr. Greg Luecke, has acquired two PUMAs. However, the original controllers are

damaged beyond reasonable repair. The team objective is to develop a new control system for

the PUMA that will replace the original controllers.

2

Concept Diagram

System Requirements

Functional

1. Six operational joints
 All six joints of the PUMA will be operational, and movements will be

defined by a user-specified torque value applied at each joint.

2. Control through C code
 The PUMA will be controlled by making specific C function calls. This will

allow the user to write custom programs that control the PUMA.

3. Use existing H-bridge design
 The client, Dr. Luecke, has an existing H-Bridge design that is very robust. He

would like it to be refined and utilized in the controller.

Non-Functional

1. Professional Quality
 Our client would like the controller to look professional. Its circuits should be

fabricated on PCBs, and the controller’s inputs and outputs should be clearly

labeled.

2. Ease of Use
 The C library of functions will be easy to use, allowing for rapid development

of custom applications for the PUMA.

3. Performance
 There will be no noticeable lag from the time a command is given to when the

PUMA moves. The output of the controller should be accurate with respect to

the input command given for each joint.

4. Status Circuit

3

 A separate circuit will monitor the control system and provide visual

feedback. This will allow direct traceability of component failure in control

system sub circuits.

5. Modular Design
 The control system will be of a modular design. Separating aspects of the

control system into sub circuits allows for easier repairs. Also, this allows for

modifications in future sub circuit designs.

4

System Design

Primary Circuit Block Diagram

5

Linux Computer

The Linux computer utilizes a C library that allows for communication between the controller

and custom application programs. The C library will serve as a basic API (Application

Programming Interface) allowing application programs to easily interact with the PUMA.

MOTENC-Lite 4-Axis Motion Control & Data Acquisition PCI Board (MOTENC)

Two MOTENC boards are connected to the Linux computer via PCI slots (one PCI slot per

board.) These boards are accessible through C code and will output desired positions for each

PUMA joint as an analog voltage ranging from 0-5 volts. The MOTENCs’ quadrature encoder

support will be leveraged to get the relative position of each arm. Note that a single MOTENC

board only supports four degrees of freedom, while the PUMA robot has six degrees of freedom,

hence the need for two boards.

Pulse Width Modulated (PWM) Control

Each PWM circuit outputs a square wave signal whose duty cycle is controlled by an input

voltage from the MOTENCs. This input voltage ranges from 0-5 volts and linearly scales the

output square wave duty cycle.

H-Bridges

Each H-Bridge controls the rotational direction of the DC motor at a particular joint. There are

two PWMs per H-Bridge, and each PWM changes the path that current from the power supply

flows across the motor. This allows for bidirectional rotation of each motor.

Motor Power Supply

The power supply provides power to the six permanent magnet DC motors at 24 volts apiece.

The robot is divided into two sets of three identical motors. Three motors are designed to operate

at 2-6A, while the other three motors operate between 1-4A. The power supply is composed of

six dedicated modules that can be treated as isolated channels of power for each joint.

PUMA

The PUMA has six movable joints, and each joint has a DC motor and a quadrature encoder

attached to its shaft. As the DC motor is energized, the encoder rotates creating pulse trains.

These pulse trains are used to indicate the current position, speed, and direction of rotation of a

specific joint.

6

Auxiliary Power & Secondary Circuit Block Diagram

Power Entry Module

The power entry module delivers ~110VAC (at 20A) wall power to the primary and

secondary/auxiliary circuits. It has built in overcurrent and electromagnetic interference

protection.

Circuit Breakers

The circuit breakers provide overcurrent protection to the power supplies. However, these

breakers allow for excessive inrush currents over short periods of time.

Control Relays

The control relays include on/off and emergency shut-off capabilities of power to the motors.

Additionally, a momentary on button is provided to release the PUMA electromagnetic safety

brake.

Auxiliary Circuit Power

The auxiliary circuit power delivers the necessary voltage and current to the cooling fans,

PWMs, Status Circuit, and PUMA electromagnetic safety brake.

7

Cooling Fans

The cooling fans provide increased air circulation to help keep components within their

respective operational temperature range.

Status Circuit

The status circuit monitors the input commands from the MOTENC versus the output of the

PWMs and H-Bridges at each joint. The circuit detects if the components are damaged or not

receiving commands. A green LED indicates positive functionality, while a red LED shows

where a particular failure occurred.

Electromagnetic Brake

Three of the six motors have electromagnetic brakes installed to lock the joints in position. The

brake is switched on/off by either a low power H-Bridge or a momentary switch. The brake

requires less power to function than the PUMA motors.

8

Additional Specifications

User Interface

Linux Computer

 Ubuntu 12.04 LTS operating system

 Library of functions written in the C programming language to control the PUMA (non-

graphical)

Controller

 Motor power on/off switch

 Emergency stop button

 Momentary on button to release the PUMA brake

I/O

Input

 User specified torque to be applied to a specific PUMA joint in a particular direction

Output

 Applies corresponding power to PUMA motor, resulting in arm movement

Hardware

PUMA 560 (x2)

 Existing robot frame, motors, and wiring

MOTENC-Lite (x2)

 Version 7541

 32-bit resolution quadrature encoder (x4)

 -10VDC to 10VDC programmable analog output (x8)

 14-bit resolution analog inputs, 5VDC max (x8)

PWM Circuits (x6)

 Custom circuit

 0-5VDC input

 0-100% duty cycle (scales linearly with input voltage), 5VDC PWM output

H-Bridges (x6)

 Custom circuit

 0-5VDC PWM input (x2, one per direction)

 Applies power to PUMA motor during PWM duty cycle

9

Power

Meanwell Dr-120-24

 Switched Mode Power Supply

 ~115VAC, 3.3A in / 24VDC, 0~5A shared output

 120W rated power

 20A inrush current

Excelsys UX6 (with 3 XgB modules & 3 XgE modules)

 Switched mode power supply

 ~120VAC, 11.5A input

 UX6 frame 1200W max output

 XgB 24VDC (nominal), 0~8.3A output

 XgE 24VDC (nominal), 0~5A output

Circuit Breakers

Power Entry Module

 125/250VAC, 20A max

 IEC 320-C20 (Male Pins)

 2 Pole, Quick Connect Terminals

 Shielded, EMI Line filter

 General Purpose, Panel Mount

Excelsys

 480VAC, 5A max

 Lever Actuator

 2 poles, Thermal Magnetic

 Screw Clamp Terminals

 DIN Rail mount

Meanwell

 480VAC, 15A max

 Lever Actuator

 2 poles, Thermal Magnetic

 Screw Clamp Terminals

 DIN Rail mount

Control Relays

Excelsys ON/OFF & Emergency Stop

 Non-latching, general purpose

 Contacts: 120VAC,15A max

 Coil: 24VDC, 37mA

 1N.O.+ 1N.C.

 DIN Rail mount

EM Brake Momentary Button

 Non-latching, general purpose

 Contacts: 400VAC, 6A max

 Coil: 24VDC, 6mA

 1N.O.+ 1N.C.

 DIN Rail mount

10

Operator Switches/Buttons

Motor Power Emergency Stop

 22mm (dia.) cutout, 40mm (dia.) mushroom head

 Double Pole/Single Throw, On-Off/Off-On

 1N.O.+ 1N.C.

 Coil: 24VDC, 10mA

 Panel Mount

Motor Power Selector Switch

 22mm (dia.) cutout, 29.8mm (dia.) bezel

 Double Pole/Single Throw, Two Positioned, Maintained

 1N.O.+ 1N.C.

 Coil: 24VDC, 10mA

 Panel Mount

EM BRake Momentary ON

 22mm (dia.) cutout, 29.7mm (dia.) bezel

 Double Pole/Single Throw On-Mom (Off-Mom)

 1N.O.+ 1N.C.

 Coil: 24VDC, 10mA

 Panel Mount

Indicators

Status Lights

 Kingbright RGB, through hole

 1.9~3.3VDC (feedforward), 20mA (normally)

 LED

 Flush Mount

EM Brake Indicator

 Omron 16mm round yellow pilot light

 24VDC, 8mA (normally)

 LED

 Panel Mount

Cables

Single Phase Wall Power

 125VAC, 20A (rated)

 Male Pins (blades), Female Sockets (slots)

 NEMA 5-20P to IEC 320-C19

 12 AWG, 3 conductor

 10’ length

Single Phase Excelsys Power

 250VAC, 15A (rated)

 Female Sockets (slots) to Leads

 IEC 320-C13, Right Angle

 14 AWG, 3 conductor

 3.28’ length

11

Terminal Blocks

AC (Black, White, Green/Yellow)

 2 Position, feed through

 1000V, 24A (rated)

 12-26 AWG

 DIN Rail mount

DC (Blue, Grey)

 2 Position, feed through

 1000V, 24A (rated)

 12-26 AWG

 DIN Rail mount

Software

Primary functions

 Drive MOTENC analog outputs for user specified torque values

 Read quadrature encoder counts for each PUMA motor

 Read analog inputs (PUMA motor potentiometer feedback)

 Turn PUMA electromagnetic brake on/off

Helper functions
 Search through all connected PCI devices, locate and memory map each MOTENC

 Initialize MOTENC quadrature encoders, analog outputs, and analog inputs for use

 Convert desired analog output voltage to the correct MOTENC output transfer function

12

Design Documents

C Code Design
The C library is the primary interface for controlling the PUMA, so many considerations were

taken into account when designing the code. After talking with our client, it became clear that the

end user of the code would be one with intermediate C programming knowledge and experience.

Therefore, the C code was designed to hide the messy, lower level details of interfacing with the

MOTENC-Lite boards (such as PCI interfacing, memory mapped I/O, bitwise operations, etc.)

Instead, the C library provides a clean, easy to use interface to control the PUMA.

There were also a couple of safety considerations that went into the design of the C code. First,

the code must never allow the user to activate both sides of an H-bridge at the same time. This

can demagnetize the motor attached to the H-bridge, and ultimately destroy said motor. There are

safeguards placed in the C code to prevent this situation from occurring. Second, in the event of

a program crash or unexpected termination, the PUMA needs to be returned to a safe state (i.e.

stop all motors and apply the electromagnetic brake.) This functionality can be easily achieved

by inserting signal handlers into the C code. When termination or interrupt signals are

unexpectedly sent to the user’s program, a shutdown routine is run to place the PUMA in a safe

state. These signal handlers, as well as suggested program flow, are located in a code skeleton

file. The skeleton file should always be used as the starting point for any end user’s PUMA

application.

The C library consists of three files. The header file, puma.h, contains definitions of all the

available functions the user can call to control the PUMA. The implementation file, puma.c,

contains the implementation of all the functions defined in the header file, puma.h. It is strongly

recommended that the end user only call the functions labeled as “Public” or “Primary” and

never call functions labeled “Private” or “Helper” (see comments in the code.) The third file is a

configuration header, puma_config.h, that contains all the constants for a particular PUMA. The

constants defined in this header file can be tweaked by the user to better match the characteristics

of a particular PUMA. It’s recommended that these constants be changed in small intervals to

prevent damage to the PUMA.

Please see Appendix V for the C library code and skeleton file.

PWM Design
There are many different ways to control the speed of a PUMA motor, but one simple and

effective way is to use Pulse Width Modulation (PWM.) The PWM is the process of switching

power ON and OFF to a device in pulses at a specific frequency. Driving a DC motor with a

PWM signal is often used in conjunction with an H-bridge. In order to adjust the amount of

current flowing through the H-bridge, a pulse width modulator circuit was designed. The main

idea is that a change in the duty cycle of the PWM proportionally changes the average current

flow through the H-bridge. The use of two 555 timers allows for a configurable duty cycle and

generation at a desired frequency.

13

The PWM works by using the first 555 timer as a constant frequency square pulse generator that

drives the trigger input of a second 555 used as a monostable output, with its delay timing varied

by a voltage applied to its control pin. In other words, varying the internal set point of the second

555’s control voltage pin will change the pulse width duty cycle. Every time the trigger pin

pulses low to less than 1/3 of the supply voltage, the 555’s output switches to high, and the

discharge transistor is disabled. Disabling the discharge transistor allows the capacitor C3 to

charge through an IC current source. The capacitor keeps charging until its voltage is above the

control voltage at which the 555 changes state. Once it changes state, the output will go low and

the discharge pin becomes active to discharge C3. The cycle will repeat once the trigger of the

second 555 senses a falling edge from the first 555. Therefore, the duty cycle is determined by

the control voltage and the frequency is dependent on the ratios between R1, R2, and C1. Some

of the properties and guidelines that were taken into consideration for designing this PWM

modulator are shown below.

1. Design tips for desired period/frequency on the first 555 timer

Periodic time T = 1/f

Charge time tC = 2/3T or tC = 0.7 x (R1+R2) x C1

Discharge time tD = 1/3T or tD = 0.7 x R2 x C1

2. Current Source – the IC current source used in this design is a LM234Z. In order to

obtain a linear duty cycle output, the threshold voltages have to increase linearly. If a

resistor were to be used instead of an IC current source, the capacitor will charge in an

exponential manner rather than linear manner. To drive the current source, a resistor is

required; in this case a potentiometer is used. This potentiometer can also be used as a

calibration tool.

14

3. To adjust the frequency in the first 555 timers, R1 could be replaced with a

potentiometer.

The PCB design can be found below.

H-Bridge Design

15

In general, an H-bridge is simply a set of switches used to alternate the polarity on a DC motor

thus changing the direction of rotation, as shown above. Closing the correct switches creates a

path for current to flow across the motor.

The H-bridge works by turning on a resistor voltage divider driving a voltage on each gate that

exceeds the MOSFETs ON-gate voltage. The PWM input signal pulls the base of transistor T1

high which allows current to flow from the base of T3 to the base of T2, limited by a 5KΩ

resistor. This turns T2 and T3 on, powering the voltage dividers comprised of R_a/R_b, and

R_c/R_d.

This H-bridge design uses a mixture of P-channel and N-channel MOSFETs. Each motor path

uses one P-channel and one N-channel MOSFET. Selecting the correct pair of MOSFETS is one

of the most important parts of designing this circuit since so many factors affect its performance.

It can get a little tricky at times to pair a P and N channel MOSFET together since different

aspects of their construction cause functional differences between them. Perhaps this is why it’s

a common design practice to use N-channel MOSFETs for all four switches, and using a charge

pump to drive the high side MOSFETs. This is a common practice, and actually exists in an IC

called a bridge driver. Some of the properties that were taken into consideration for MOSFET

selection are shown below.

1. Package dimensions – make sure that they are in a through hole TO-220-3 case, 0.1 inch

spacing.

2. Continuous Drain Current – shooting for 30 amps, but could go higher or lower

depending on needs.

16

3. Drain-Source On Resistance – The lower the better, but it’s good to have these matched

between P/N channel MOSFETs. The lower the ON resistance, the lower the voltage

drop across them in operation, resulting in lower heat buildup that needs to be dissipated

in the MOSFETs. It’s good to match these so they dissipate heat evenly.

4. Input capacitance – Obviously, the smaller this value is, the faster the H-bridges response

time. Capacitances of the same order of magnitude should be fine.

5. Absolute maximum Gate-to-Source voltage, and Gate ON threshold – Aiming for ±20V,

with a 4V on threshold. Then, set R_a/R_b to drive the gate to ~9 volts at normal

operation mode, and be able to allow for supply voltage to almost double or half without

risking damaging the MOSFETs or killing performance.

6. Power Dissipation – ensure the rated power dissipation on each MOSFET is high enough

to handle performance needs. This could be calculated by calculating the voltage drop

across them in operation. For instance, if a 1Ω motor stalls at 12 volts, a MOSFET with

10mΩ will need to dissipate approximately 1.44 Watts.

7. Isolated mounting area – A lot of the higher power dissipation MOSFETs will have a

metal back, but a lot of them have that metal backing connected to the drain of the

MOSFET. If all four of these are mounted to a heat sink for cooling without an electric

isolating pad, the two MOSFETs will short circuit. Usually the isolated ones have lower

power dissipation, so that’s something that will have to be decided based on the

application.

In addition, when the DC motor is rotating, it creates a back electromotive force (EMF) that

pushes against the current that is driving the motor. The back-EMF manifests itself as a voltage

and is generated by the motion of the motor’s armature relative to the magnetic field of the

motor’s magnets. To protect the circuit from the back-EMF, select the right diode based on the

motor specification and application needs.

The PCB design can be found below. Note the large traces needed for the large amount of

current that will be flowing to the motor.

17

18

Status Circuit Design

The status circuit is designed to show the current operating state of the controller. Red and green

LEDs indicate whether the PWM and H-bridge PCBs are functioning correctly and can be

utilized by the user for troubleshooting most problems. In this circuit, an illuminated red LED

indicates a malfunctioning H-bridge or PWM circuit, while an illuminated green LED indicates

proper functionality.

To determine the operating state of a specific joint’s PWM circuit, the status circuit samples the

corresponding MOTENC voltage input and compares it with the PWM output. The truth table

below shows the desired output of the comparison. It should be easy to see that a single XOR

gate and a single NOT gate suffice for the Boolean logic.

MOTENC

Output

PWM

Output

Error

(Red LED)

Correct

(Green LED)

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

The similar approach can be used to find the operating state of a specific joint’s H-bridge circuit.

The status circuit samples the corresponding PWM output and compares it with the output of the

respective H-bridge. The truth table below shows the correct output for the comparison. It is

identical to the previous table, and can also be implemented with a single XOR gate and a NOT

gate.

19

PWM

Output

H-bridge

Output

Error

(Red LED)

Correct

(Green LED)

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

It is important that the status circuit be isolated from the other circuits. This prevents the

performance of the PWM and H-bridge from being negatively affected. Opto-isolators were used

to decouple the status circuit from the rest of the controller circuitry. Another design

consideration is to use 1kΩ pull-down resistors on the inputs to the logic gates. This forces the

input to the logic gate to be 0 when no input signal is applied. Additionally, current-limiting

resistors need to be placed in series immediately before the red and green LEDs. The values of

these resistors will need to be calculated based on the manufacturers recommended current for

the LEDs.

The status circuit PCB design can be found below.

20

21

Electromagnetic Brake Release Design

The original robot chassis is equipped with electromagnetic (EM) brakes for the three large

motors. The source of power is 24VDC logic requiring approximately 1.5A to fully disengage

the friction mechanism in each motor’s housing. In order to control the brake via C-code, the

PCB for the EM brake function receives signal directly from the MOTENC as well as power

from the Meanwell.

Utilizing the idea of the H-bridge, the EM brake circuit contains a half H-bridge. Since the

electromagnetic brake switches states at 24 VDC, the half bridge will act as a switch rather than

a current controller like the H-bridge. Although the half bridge is a much simpler circuit, the

BJTs can’t be eliminated because the MOTENC board can only output up to 10 VDC and the

MOSFETs require more than 12 VDC to be in the saturation region. Therefore, the BJTs must be

used to help drive the gate of the MOSFETs. To ensure that the half bridge always outputs 24

VDC, the input PWMs have to be at 100% duty cycle. This means that instead of a PWM input,

a constant 5 VDC signal can be used. See H-bridge design section for schematic and design

detail.

22

The PCB design for the EM brake is below.

23

Main Board Design

The main board is meant to be the central signal routing point across the controller assemblies.

On this board, power and signals handled by the MOTENCs are routed to the peripheral PCBs

that manage each joint. The encoders, potentiometers, motors, and EM brake wires from the

PUMA harness are also routed to their respective PCBs. The main board also contains six 2.2µF

decoupling capacitors. Each capacitor protects one of the PUMA motors from voltage sag during

operation and voltage spikes when the motor stops.

General PCB Design
There were two main goals when designing all the PCBs. First, the PCBs were designed to be

modular. This allows the circuit boards to be easily repairable, and easy to swap in better or

alternative designs for the status, PWM, and/or H-bridge PCBs. Inspiration was drawn from

Arduino shields that stack vertically on each other. The team’s stack design consists of the status

circuit PCB as the base, the PWM control circuit stacking on top of the status circuit, and the H-

bridge PCB at the top of the stack.

24

The second design goal was for the PCBs to effectively dissipate heat. During initial testing, the

team noticed that the power MOSFETs on the H-bridge generate a significant amount of heat.

Additionally, the power supplies also created a sizeable volume of heat. To protect the electrical

components from these heat sources, surface mount and through hole technologies needed to be

carefully considered.

Surface mount components require an additional thermal plane on the PCB to dissipate heat,

which ultimately drives up the cost of manufacturing the PCBs. This thermal plane also

complicates the CAD schematics, increasing the chance of an error occurring in the electrical

drawings. Additionally, surface mount components can be difficult to solder by hand. Due to the

team’s lack of electrical CAD and soldering experience, surface mount components were not a

particularly attractive option.

Through hole components do not need a dedicated plane for heat dissipation. Instead, they

dissipate heat radially from their solder joints. This keeps the cost of manufacturing the PCBs

down, and keeps the CAD drawings simple. Additionally, through hole components are easier to

solder than their surface mount brethren. With these considerations in mind, the team opted to

use through-hole components instead of surface mount components for the PCBs.

Power Delivery Design

25

The main consideration for all power in the controller is the limitations of ~120VAC at 20A

maximum delivered via wall power. As a general rule of thumb, it is necessary to keep power

utilization at or below 80% of the available power supply rating. This limits the controller to a

combined consumption of approximately 16A. While inrush currents and small system surges

are to be expected, all attempts must be made to balance loads and mitigate transient noise. Such

transients can arise from lack of in-line filters and improper wire gauging.

The Schurter power entry module was selected for meeting the 20A capacity of the service

supply. It has an electromagnetic interference filter for any noise being transmitted via the AC

wall supply. It also has an integrated circuit breaker that will allow the necessary inrush surges

over short periods of time (e.g. it can deliver throughput at 132% rated current for nearly 3

minutes), but will cut power nearly instantly at surges above the tripping threshold. This means

that a physical fuse is not necessary for this application as the breaker can disrupt continuity

before catastrophic damage occurs. The Excelsys and Meanwell power supplies (discussed

below) require steady current of 11.5A and 3.3A, respectively. This is 75% of the rated power

throughput of the Schurter PEM.

The Excelsys and Meanwell power supplies convert AC into DC power via switching regulators.

This regulation is important for efficiency. A side effect of higher efficiency is lighter weight and

less heat dissipation (as compared to other power conversion methods.) These power supplies are

also known for having internal circuitry to protect themselves and external components from

over/under voltages/currents. In the event that damaging surges are sensed, each power supply

will shut itself off for a certain length of time (this length of time is predetermined by the

manufacturer and is based on factors such as temperature, residual energy, and type of

over/under event.) An additional feature that both converters share is a potentiometer on the DC

output to vary the voltage. This can allow for compensations due to sag or over voltage when the

sub circuits are connected together.

The decision to run at 24VDC logic is highly influenced by the PUMA motors run currents. At

1~4A (depending on the joint), 24VDC delivers the appropriate amount of power within

electrical/mechanical limitations. Specifically, the Excelsys contains six isolated modules

delivering filtered DC power that can absorb electromagnetic forces from the rotating, inductive

motors. The Meanwell supply was chosen due to its rugged performance and reliable output.

In order to protect the power supplies from current and/or voltage surges, circuit protection was

added. There is one breaker each per power supply, and they follow the 80% utilization rule as

outlined above. The two poles of a breaker manage the AC line and AC neutral conductors,

while the AC physical earth (ground) conductor is allowed direct continuity throughout the

single phase AC power network. Since the Excelsys and Meanwell have different inrush needs at

startup, the tripping curves for the Schurter circuit breakers are dissimilar. The tripping

mechanisms are twofold. First, thermal contacts slowly come apart as current passing through a

bimetallic switch causes separation from heat. If the contacts heat up too far, the current will not

be able to route through the breaker. Additionally, an electrical pulse can force the contacts of

the breaker poles apart if too large of a current is instantaneously seen.

26

A modern convention is to control AC power delivery with lower power DC switches and relays.

This makes it less likely for arc flashes and other harmful short circuits to exist at control

interfaces. On the enclosure front, a button and a switch control AC throughput to the Excelsys

power supply, while a single momentary button can be pressed to release the electromagnetic

brake inside the PUMA chassis. These buttons and switch are connected to a 24VDC primary

circuits that controls the solenoids of secondary ~120VAC circuits. For the EM brake, there is a

6A relay. This matches the 125% of the 5A output from the Meanwell for protection against over

currents damaging this circuit path. The AC throughput for the Excelsys involves a 15A relay,

approximately 125% of the 11.5A run current. The relays are also from the same manufacturer,

TE Connectivity, though they are from different families within the relay category. This is due to

the wiring convention being similar across the product line.

In order to conduct power from the AC source, the DC converters, and to the relays and circuit

breakers, DIN rail mountable components were selected. This includes terminal blocks (and their

associated subassembly parts). The terminal blocks are Phoenix Contact, and can handle wire

from 12-26AWG (stranded recommended) with withstand parameters of 24A and 1000V. Screw

terminals were chosen for ease of use; mating wire into spring clamp or other modern feed

through terminal blocks can be troublesome for novice technicians. The blocks will be set in five

groups of two: AC Line, AC Neutral, AC Ground, DC+ (24VDC), and DC return (0VDC). The

jumper bars, end blocks, and end stops from this part family assist in either continuity or

separation of signals.

The wire gauges, where applicable, follow the original standards of the PUMA. For example,

16AWG stranded wire was used for the three larger PMDC motors of the robot chassis. It is

important to keep the wire as similar as possible when joining to the harness. Dissimilar wire can

cause voltage sag and/or polarity shifts, and current parameters can be adversely changed when

running upsizing/downsizing wire gauge. Since the harness is prebuilt, it was not possible to

rebuild and therefore match the exact wire material in the number and quality of strands; this, in

practice, is the best approach when running wire.

In addition to the factors affecting current/voltage for wiring, the need for wiring was utilized for

its effect on modular design. Wherever the use of PCBs can be circumvented, wire is used to

connect components and sources of power. This is also for cost savings. The general rules for

ampacity regarding average current were used to decide upon gauges. Since the runs of most of

the wires are less than 2 feet, voltage sag is not a major consideration across connections.

To address safety, finger safe connections were utilized when possible. This refers to having

terminations that require a tool to touch any conducting parts, specifically that a human finger

cannot get close enough to the conductor to cause shocks and/or arcs. The over/under

current/voltage regulation via breakers and relays is another safety consideration. When tracing

power dissipation downstream, all components are sized to follow the 80% consumption rule.

This is to keep temperatures within optimal ranges. The cooling fans use low power (~15Watts

apiece) and keep continual air movement. For elements operating near and/or above the limit

where de-rating due to ambient temperature can cause undesirable behavior, constant cooling can

offset or delay the effect multiplicative factor of heating.

27

Since the CPU does not directly monitor the power delivery from the Excelsys & Meanwell, it is

necessary and sufficient to use relays to inhibit the on state of the motor power and EM brake

power. Even if a C function is calling for movement, the motors cannot move unless the user

explicitly has the selector switch and emergency stop in the on state. Since a higher class of

safety was not a functional requirement, guided contacts and a monitored safety circuit were not

built. The electromagnetic brake is directly connected to the Meanwell so that the robot can be

moved out of an unsafe position (e.g. if the chassis is injuring a person or the frame itself.)

Whenever the brake is released, a yellow indicator light on the front of the enclosure will be

illuminated. The manual brake release is a momentary switch so that it has to be purposefully

pressed and cannot become locked in a released position. The Meanwell does not have an

emergency stop for this reason, and also so that the e-stop and selector switch can be operated on

the Excelsys supply unless the Meanwell has suffered catastrophic shutdown.

The enclosure is both a mechanical structure and part of the electronic circuit. The chassis must

be grounded to the AC source physical earth (PE) terminal, and all internal grounding traces

back to the dissipation that a PE offers. This is to disrupt any ground loops that might injure a

user and/or feedback to the CPU via the MOTENCs.

Please see Appendix VII for AutoCAD Electrical schematics.

Enclosure Design
The enclosure was selected for size and form. This allows room for the existing components, and

a small percentage of space for future growth of the internal design. The low cost and standard

form of server racks means replacement is easier, and the enclosure could possibly be mounted

in a server cabinet. The material being aluminum allows for milling of mounting holes on a

standard machine.

Please see Appendix VI for AutoCAD panel drawings.

28

Testing Procedures and Results

MOTENC-Lite DAQ

Procedure

Verify that the MOTENC-Lite boards are fully functional utilizing test code provided by the

manufacturer. The test code allows the encoder values to be read & reset, values to be written to

the DAC, write to output registers, and read from input registers.

Results

Both MOTENC-Lite boards were tested and fully functional within the manufacturer’s

specifications. The MOTENCs did not create noticeable lag between the software and hardware

interfaces.

C library

Procedure

To verify that the library functions are operating correctly, a small test program calls each library

function with different parameters. If the function call activates or deactivates a pin or pins on

the MOTENC boards, the team verifies the behavior by connecting a multi-meter to the affected

MOTENC board pin(s).

Results
All functions are working as designed. The C library correctly initializes the MOTENC boards,

correctly reads quadrature encoder counts and potentiometer values, correctly changes the

MOTENCs’ analog outputs, and toggles the PUMA electromagnetic brake on and off.

PWM Control

Procedure
The first step is to construct the left half of the PWM circuit shown in the PWM design. The

reason is to ensure that the first half will output any desire period/frequency. Then, apply 5 volt

DC to power the first half of the PWM. Use an oscilloscope to check the output, and tune the R1

potentiometer to the desired period/frequency. Once the first half of the PWM works properly,

construct the second half of the circuit. Apply at least 5 volts to the V+ of the current source, and

then examine the threshold pin of the second 555 timer. Next slowly increase the 5 volts at the

V+ of the current source to get a linear ramp from 0 to 5 volts. Then apply an input of 0 to 5

volts DC to the control voltage pin, 2.5 volts will correlate with a 50% duty cycle, as opposed to

a continuous output (5 volts or 0 volt input, 100% or 0% duty cycle). Now connect the

oscilloscope to examine the output pin of the second 555 timer. The signal might not be as clear

as first; however, adjust the current source’s potentiometer to get a clear signal (aim for 50%

duty cycle.)

29

Results
After connecting 5 volts DC to the first half of the circuit and tuning the R1 potentiometer to

desired period/frequency, the first half of the PWM circuit outputs a clear signal with the desired

period. After constructing the second half, 24 volts DC was applied to the current source and the

output was calibrated by adjusting the potentiometer of the current source. The circuit outputs a

PWM proportional to the control voltage; 0 to 5 volts scales linearly to 15% to 95% duty cycle.

Notice that there is limitation to this circuit; the range of operation only varies between 15% and

95% duty cycle. Therefore, to turn off the PWM (0% duty cycle), the voltage at the control

voltage pin must be at -1 volts. In addition, the team also ran into problems when integrating

multiple PWM circuits together. The output signal became really distorted and very noisy. The

team would like to come up with a different design if time allows.

H-Bridge

Procedure
To ensure that the H-bridge works properly, first calculate the right resistor values so that the

MOSFETs will be in saturation region with a 12 volt power supply. In addition use a different

motor to avoid any damage to the original motor on the robot. Apply 12 volts to the power input

on the H-bridge, and then connect the motor. A quick check before connecting the motor is to

feel if the MOSFET overheats without any input. If the MOSFET feels hot, the circuit

configuration is incorrect. Otherwise, connect the motor to the H-bridge. Insure that nothing is

connected to the inputs, ensuring that the motor will not energize. To energize the motor, apply a

5 volt PWM to the input, and vary the PWM duty cycle to adjust the speed of the motor. Repeat

the last step with the opposite input, to ensure that the motor rotates in the opposite direction.

After verifying that the H-bridge works as designed, repeat the steps above with the actual motor

on the robot with extra caution. However, this time use a 24 volt 8 amp power supply. Be sure to

unlock the EM brake with 24 volts DC before attempting to apply any inputs to the H-bridge.

Results
In connecting the 24 volts to power the H-bridge, no overheating issues were experienced with

the MOSFET. However, the MOSTFETs generated a lot of heat during longer operation periods,

which prompted the addition of heat sinks and cooling fans into the design. Once the motor was

connected, without any input the motor was not energized. After applying a 5 volt PWM, the

motor was energized. Alternating inputs changed the direction of motor, along with changes in

speed when varying the PWM duty cycle.

Power Delivery

Procedure
Connect individual components to their respective power supply (Meanwell and Excelsys). The

components will be connected in isolation and then together while monitoring current (amps)

30

and voltages (DC/AC) to ensure no under/over current/voltage situations occur. Once the proper

power needs are witnessed, connect relays, switches, and circuit breakers to ensure no under/over

current/voltage situations occur.

Results
In connecting the control and protection components, no over/under power issues were seen. The

six PMDC motors developed voltage sag of 4~7VDC. This sag was corrected by the use of

2.2µFarad capacitors across the power terminals of each motor.

Status Circuit

Procedure
Connect MOTENC analog outputs, PWM outputs, and H-Bridge outputs to respective opto-

isolator, and test that there is output from the opto-isolator. The opto-isolator output must be in

the range of 10-15VDC for the logic gates to function correctly. Next, verify that the correct

LED is illuminated for all possible inputs to the status circuit.

Results
TBD

System Integration

Procedure
Once all components and subassemblies are tested and working individually, they can be

iteratively added to the system and tested for proper functionality. The following steps outline

the process of integrating all components into the system:
1. C library and MOTENC boards are coupled and tested

2. PWM control circuits are added to the system, and tested for proper output from C

function calls

3. H-Bridges are added to the system, and tested for proper output from C function calls

4. Power is coupled to the H-Bridges and the PUMA is connected to the system; Check for

proper joint movement based on specific C function calls

5. Add auxiliary circuits (status circuit, relays, switches, fans, EM brake, and LED

indicators) and verify they are working correctly

Results
First, the power delivery system was tested for proper functionality. The team verified that power

was correctly being routed to the power supplies, and that the relays and switches functioned

properly. A couple minor issues were found, mainly wiring the switches incorrectly (normally

open/normally closed.) These were easily fixed. The output of the power supplies were then

connected to the PWM circuits and H-bridges as each were tested.

31

Second, the MOTENCs were connected to the PWMs of the lower three PUMA joints. A test

program on the computer changed the output voltages on the MOTENCs which propagated to

the input of the PWM circuits. The outputs of the PWM circuits were monitored with an

oscilloscope to verify the input voltage correctly changed the duty cycle of the output signal. No

problems were found. The process was repeated for the PWMs of the upper three PUMA joints.

Again, no issues were found.

Next, the EM brake was integrated into the system and was found to be functioning properly.

The H-bridges for the lower three joints were then connected to their respective PWM circuits. A

multimeter was used to check that the H-bridges were correctly operating when receiving input

from the PWMs. No problems were found, so the process was repeated for the upper three joints.

Again, no issues were found.

Finally, the H-bridges were connected to the motors. The C code test program first unlocked the

EM brake, and then slowly moved the bottom three joints in both directions. The speed of joint

movement was gradually increased, and no problems were encountered. Potentiometer values

and encoder counts were also monitored and seemed to make sense. The process was then

repeated for the upper three motors. A stray semi-colon in the C code initially prevented the

upper three motors from moving, but once corrected, they functioned correctly.

Integration of the status circuits is still pending.

32

Appendix I: Operation Manual

Electromagnetic Brake Operation
The electromagnetic brake (EM brake) that locks/unlocks the motors for the bottom three joints

can be controlled via computer interface or switches/buttons on the front panel of the controller.

Whenever the EM brake is unlocked, a yellow (amber) light on the front of the enclosure will

illuminate.

Front Panel

A momentary ON button is provided to unlock the EM brake in the event that the robot has

failed/stopped in an undesirable position. In this manual operation, the brake will only be

released while the button is pressed.

WARNING – Injury/damage will occur to the operator and the robot if the brake is released and

the robot is allowed to drop to the ground or onto robot body parts.

Computer Interface

The C code provides an easy method for controlling the EM brake. After a successful call to

puma_init(), the EM brake can be turned released by called brake_off() and applied by

calling brake_on(). The user should check the return value of these functions, as they return 1

when the brake was successfully released or applied, or 0 if there was a problem.

When writing custom programs, the user should always start with the code template provided in

the file skel.c. The template provides extra safety by applying the brakes when the program

terminates unexpectedly or prematurely. It also shuts off all MOTENC outputs so that no joints

will continue moving after the program ends.

Motor Operation
The six motors in the PUMA robot have a two-step process to induce movement of the robot

joints. These two steps are allowing power to be distributed to the motors via the controller and

coding torque/direction via the computer.

The front panel of the enclosure has a button and a switch tied directly to the internal power

supply for the six motors. There is an emergency stop (E-stop) button to stop any movement of

the robot when damage or injuries are possible, and a Selector Switch to allow power through the

circuit. To allow powering of the motors, follow the steps below.

1) The E-stop stays engaged when fully pressed. To release, twist the button to the right.

2) The E-stop must be in the OFF position and the Selector Switch must be in the ON position

to allow C-code to induce joint movement.

3) The PUMA can now be controlled through C-code. It is highly recommended that user

programs use the file skel.c as a template for proper initialization and safe shutdown of the

PUMA.

4) To move a motor, the user should:

33

a) Call the function apply_torque() or write_dac() with proper arguments. This will set

the desired joint in motion.

b) Consecutively call read_pot() or read_encoder() to monitor the moving joint’s

position.

c) When the desired position has been reached, call the function apply_torque() with a

torque value of 0 or write_dac() with the value PWM_OFF. This will stop the joint from

moving.

34

Appendix II: Initial Design Versions

Old H-bridge Eagle CAD Drawing

This is the Eagle CAD H-bridge schematic that we inherited from one of Dr. Luecke’s previous

students. It was used as a starting point for creating a circuit design for the H-bridge. The Servo

PWM and Step and Direction Conversion circuits in the drawing above do not work, so they

were omitted from the final H-bridge circuit.

35

Appendix III: Other Considerations

PWM Circuit
Due to the instability of the PWM circuit, a new design should be taken into consideration.

Problems with the current design are listed below.

1. The 555 timers are unreliable and imprecise. A new design needs to have a more stable

way of creating oscillations.

2. The duty cycle of the current PWM is about 15-90%. This means that without any input

to the PWM (i.e. 0 VDC), the PWM will generate a square wave with 15% duty cycle.

This is a serious problem when connecting the PWM to the H-bridge. The H-bridge can

only operate in one direction/side at a time. If a PWM is generating a signal with 15%

duty cycle when it is technically off, both sides of the H-bridge would become active at

the same time. This causes shoot through in the H-bridge and will ultimately burn the

MOSFETs and the motors. The fix applied to the current PWM design is to set the PWM

input to -1 VDC to completely turn them off. An improved design needs to have an

operational range between 0-100% so the PWM can be turned off without needing to

drive a negative voltage to the inputs.

3. One problem the current PWM circuit has is that it introduces noise into the system.

When more than one PWM circuit is on (i.e. two joints moving at the same time), the

noise generated by each PWM circuit negatively impacts the output of the others. This

leads to jitter in each PWM signal, causing the duty cycle to be unstable. A new PWM

design should not interfere with other PWM circuits.

H-Bridge Circuit
Although the current H-bridge works well, there are a couple of improvements that could be

made. They are listed below.

1. The H-bridge is driven by a PWM signal with an adjustable frequency. The adjustable

frequency may produce audible noise when sent to the motor. To eliminate the audible

noise, the frequency of the PWM needs to be increased. However, the system becomes

nonlinear as the frequency is increased because the transistors in the current H-bridge

design aren’t capable of picking up such high frequency. New transistors should be

selected that have faster switching characteristics.

2. Safety logic is currently implemented in software that prevents both sides of the H-bridge

from being activated at once. However, a physical logic circuit should be constructed to

protect the H-bridges against software errors.

36

Status Circuit
The current status circuit design does not output the correct state when the input voltage from the

MOTENCs is less than 3 VDC. The opto-isolators correctly pick up the inputs from the

MOTENC, PWM, and H-bridge at this voltage; however, the opto-isolators output a voltage that

is considered “logic low” by the XOR and NOT gates. Although this problem does not directly

affect the performance of the PUMA, it will cause the LEDs to turn red when the PUMA is

actually operating in a valid state. This could potentially confuse the end users.

One solution to this problem would be to place Schmitt triggers after the opto-isolators. The

Schmitt triggers could be tuned so that they always output a voltage that the XOR and NOT

gates consider “logic high” whenever a positive voltage is applied to the Schmitt trigger inputs.

This way, the output of the status circuit would be correct throughout the MOTENCs’ 0-5 VDC

input range, effectively solving the current status circuit problem.

Common Reference Voltage
The current system shares the same common reference voltage throughout sub-circuits. Beside

the noises in the PWM circuits, it had not created any issues within the system. However, sharing

a same common reference voltage could damage the system with just a single wiring error. The

user could accidently apply a 24 VDC to the common instead of an actual common. Therefore, it

is recommended that future designs decouple common between sub-circuits to avoid damaging

the system.

37

Appendix IV: Bill of Materials

PWM Control Circuits Parts List

Item QTY Manufacturer Part # Unit Cost Total Cost

1K-ohm 1/4W resistor 12 CF18JT100K $ 0.10 $ 1.20

100K-ohm potentiometer 12 3362P-1-104LF $ 1.02 $ 12.24

10K-ohm potentiometer 12 3386P-1-103LF $ 1.60 $ 19.20

100nF capacitor 36 K104Z15Y5VE5TH5 $ 0.44 $ 15.84

Current Source 12 LM234Z-6/NOPB $ 1.27 $ 15.24

555 Timer 24 LM555CN $ 0.46 $ 11.04

Screw terminal, 5 pos, 5.00mm pitch 6 OSTTC050162 $ 0.84 $ 5.04

Headers, Male, 40 pin, 0.100" pitch 2 PREC040SAAN-RC $ 0.56 $ 1.12

Headers, Female, 4 pos, 0.100" pitch 12 PPTC041LFBN-RC $ 0.60 $ 7.20

 Total: $ 88.12

H-Bridges Parts List

Item QTY Manufacturer Part # Unit Cost Total Cost

100K-ohm 1/8W resistor 36 CF18JT100K $ 0.10 $ 3.60

5K-ohm 1/8W resistor 24 CF18JT5K10 $ 0.10 $ 2.40

1K-ohm 1/4W resistor 24 CF14JT1K00 $ 0.10 $ 2.40

2.2K-ohm 1/4W resistor 24 CF14JT2K20 $ 0.10 $ 2.40

NPN transistor 24 2N5551TA $ 0.21 $ 5.04

PNP transistor 12 2N5401G $ 0.40 $ 4.80

P-channel power MOSFET 12 FQPF47P06 $ 2.03 $ 24.36

N-channel power MOSFET 12 FQPF70N10 $ 2.07 $ 24.84

Heat Sink 24 581002B00000 $ 1.30 $ 31.20

Diode, 4A, 40V 12 SB540E-G $ 0.44 $ 5.28

Screw terminal, 2 pos, 0.200" pitch 12 OSTTC022162 $ 0.41 $ 4.92

Headers, Male, 40 pin, 0.100" pitch 2 PREC040SAAN-RC $ 0.56 $ 1.12

Total: $ 112.36

Status Circuits Parts List

Item QTY Manufacturer Part # Unit Cost Total Cost

100 ohm 1/4W resistor 48 CF14JT100R $ 0.10 $ 4.80

220 ohm 1/4W resistor 24 CF14JT220R $ 0.10 $ 2.40

1K-ohm 1/4W resistor 150 CF14JT1K00 $ 0.10 $ 15.00

1.5K-ohm 1/4W resistor 54 CF14JT1K50 $ 0.10 $ 5.40

10K-ohm 1/4W resistor 24 CF14JT10K0 $ 0.10 $ 2.40

22K-ohm 1/4W resistor 12 CF14JT22K0 $ 0.10 $ 1.20

38

220K-ohm 1/4W resistor 36 CF14JT220K $ 0.10 $ 3.60

470pF capacitor 36 K471K10X7RF5UH5 $ 0.30 $ 10.80

1N4004 diode 36 1N4004-TP $ 0.11 $ 3.96

RGB LEDs 28 WP154A4SUREQBFZGC $ 1.18 $ 33.04

4N33 Opto-isolator 36 4N33 $ 0.65 $ 23.40

XOR Gates IC 12 CD4070BE $ 0.52 $ 6.24

NOT Gates IC 6 HEF4069UBP,652 $ 0.98 $ 5.88

6 DIP IC Socket 36 A06-LC-TT $ 0.24 $ 8.64

14 DIP IC Socket 18 ED14DT $ 0.17 $ 3.06

16 Pin IDC Headers 6 AWH16G-0222-T-R $ 1.33 $ 7.98

16 Pin IDC Connector 6 AWP16-7241-T-R $ 0.68 $ 4.08

Ribbon Cable, 16 conductor, 100' 1 AWG28-16/G/300 $ 25.32 $ 25.32

Screw terminal, 4 pos, 0.200" pitch 8 OSTTC042162 $ 0.67 $ 5.36

Headers, Female, 8 pos, 0.100" pitch 6 PPTC081LFBN-RC $ 0.86 $ 5.16

Total: $ 177.72

Main Board Parts List

Item QTY Manufacturer Part # Unit Cost Total Cost

50 Pin IDC Headers 2 AWH-50G-0232-T $ 3.04 $ 6.08

50 pin IDC Headers, Panel mount 2 AWH50G-E232-IDC-R $ 4.56 $ 9.12

Ribbon Cable, 50 conductor, 100' 1 AWG28-50/G/300 $ 79.33 $ 79.33

Screw terminal, 2 pos, 5.00mm pitch 20 OSTTC020162 $ 0.41 $ 8.20

Screw terminal, 5 pos, 5.00mm pitch 12 OSTTC050162 $ 0.84 $ 10.08

Screw terminal, 8 pos, 5.00mm pitch 1 OSTTC080162 $ 1.33 $ 1.33

Screw terminal, 12 pos, 5.00mm pitch 1 OSTTC120162 $ 1.86 $ 1.86

2.2uF capacitor 6 ECQ-U2A225ML $ 1.70 $ 10.20

Total: $ 126.20

Power Delivery Parts List

Item QTY Manufacturer Part # Unit Cost Total Cost

Fan, 120mm, 24VDC, 0.7A 2 AFB1224SHE-CR00 $ 29.99 $ 59.98

Fan Guard, 120mm 2 8170 $ 0.85 $ 1.70

Circuit Breaker, 24VDC, 15A 1 K10P-11D15-24 $ 11.50 $ 11.50

Circuit Breaker socket 1 27E895 $ 7.56 $ 7.56

Circuit Breaker hold down clip 1 20C426 $ 0.82 $ 0.82

Circuit Breaker, 480VAC, 15A 1 AS168X-CB2F150 $ 55.61 $ 55.61

Circuit Breaker, 480VAC, 5A 1 AS168X-CB2G050 $ 76.61 $ 76.61

Power Entry Module, Wall power to IEC 1 EF12.0572.1110.01 $ 68.36 $ 68.36

Terminal Block, AC Line 2 3045088 $ 1.16 $ 2.32

Terminal Block, AC Neutral 2 3045075 $ 1.18 $ 2.36

39

Terminal Block, AC Ground 2 3044092 $ 4.05 $ 8.10

Terminal Block, DC Common 2 3044076 $ 1.11 $ 2.22

Terminal Block, DC +24V 2 3044089 $ 1.09 $ 2.18

Terminal Block, End stops 5 3047028 $ 0.56 $ 2.80

Terminal Block, End bracket 4 3022276 $ 1.03 $ 4.12

Terminal Block, Jumpers 5 3030161 $ 0.61 $ 3.05

Terminal Block, Marking Card 3 1050004 $ 1.19 $ 3.57

Hook-Up Wire, 22AWG, 25', Blue 1 3132-22-1-0500-005-1-TS $ 19.35 $ 19.35

Relay, 24VDC, 6A 1 3-1416100-0 $ 22.66 $ 22.66

Switch, Momentary, 24VDC, 10A 1 A22-TR-11M $ 27.30 $ 27.30

Switch, Selector, 2 pos, 120VAC, 10A 1 A22RS-2M-11 $ 17.06 $ 17.06

Switch, Emergency Stop, 120VAC, 10A 1 A22E-M-11 $ 37.80 $ 37.80

Pilot Light, 24V, Yellow 1 M165-TY-24D $ 27.09 $ 27.09

Power Line, 15A, Excelsys to AC 1 800-1403-2-SJT0-BL-00100 $ 5.45 $ 5.45

Power Line, 20A, IEC-320-C19 1 P049-010 $ 34.72 $ 34.72

Power Supply, DIN Rail, 120W, 24V, 5A 1 DR-120-24 $ 41.61 $ 41.61

Power Supply, Chasis, 1200W, 6 Slot 1 UX6 $ 238.96 $ 238.96

Power Supply, Module, 5-28VDC, 5A 3 XGE $ 73.33 $ 219.99

Power Supply, Module, 19.2-26.4VDC, 8.3A 3 XGB $ 83.24 $ 249.72

Total: $ 1,254.57

Enclosure, Wire, Miscellaneous Parts List
Item QTY Manufacturer Part # Unit Cost Total Cost

Enclosure, Rack mount, Open chassis 1 RM-14225 $ 119.85 $ 119.85

Enclosure, Cover panel 2 TBC-14253 $ 33.60 $ 67.20

Enclosure, Handles 2 H-9113-B $ 10.60 $ 21.20

Washer, flat, nylon 100 3365 $ 0.08 $ 7.74

T-Nut, 10 series, 1/4-20 50 3382 $ 0.12 $ 6.00

Screw, Button head, 1/4-20, 3/4" 50 Unknown $ 0.10 $ 5.00

Wire, 12AWG, 25', Green 1 WH612-05-25 $ 16.84 $ 16.84

Wire, 12AWG, 25', White 1 WH612-09-25 $ 16.84 $ 16.84

Wire, 12AWG, 25', Black 1 WH612-00-25 $ 16.84 $ 16.84

Wire, 14AWG, 25', Green 1 WH614-05-25 $ 9.52 $ 9.52

Wire, 14AWG, 25', White 1 WH614-09-25 $ 9.52 $ 9.52

Wire, 14AWG, 25', Black 1 WH614-00-25 $ 9.52 $ 9.52

Wire, 16AWG, 25', Red 1 WH616-02-25 $ 6.26 $ 6.26

Wire, 16AWG, 25', Black 1 WH616-00-25 $ 6.26 $ 6.26

Wire, 18AWG, 25', Purple 1 WH18-07-25 $ 5.42 $ 5.42

Wire, 20AWG, 25', Red 1 WH20-02-25 $ 4.28 $ 4.28

Wire, 20AWG, 25', Black 1 WH20-00-25 $ 4.28 $ 4.28

40

Wire, 20AWG, 25', Blue 1 WH20-06-25 $ 4.28 $ 4.28

Wire, 22AWG, 25', Blue 1 WH22-06-25 $ 3.11 $ 3.11

Wire, 22AWG, 25', White 1 WH22-09-25 $ 3.11 $ 3.11

Wire, 22AWG, 25', Yellow 1 WH22-04-25 $ 3.11 $ 3.11

Wire, 22AWG, 25', Orange 1 WH22-03-25 $ 3.11 $ 3.11

Wire, 22AWG, 25', Red 1 WH22-02-25 $ 3.11 $ 3.11

Wire, 22AWG, 25', Black 1 WH22-00-25 $ 3.11 $ 3.11

MOTENC-Lite PCI card 2 7541 $ 595.00 $ 1,190.00

PWM PCB 6 - $ 27.85 $ 167.10

H-Bridge PCB 6 - $ 27.85 $ 167.10

Status Circuit PCB 6 - $ 40.00 $ 240.00

Main board PCB 1 - $ 135.02 $ 135.02

EM Brake Release PCB 1 - $ 8.33 $ 8.33

Total: $ 2,119.71

Grand Total: $ 3,878.68

41

Appendix V: C Code

Puma_config.h
/*

 * Configuration values for the PUMA robot. Be careful when changing

 * these values, as you can seriously damange the PUMA and/or the

 * Motenc-Lite cards.

 *

 * puma_config.h

 *

 * Alex Grieve, 2014

 */

#ifndef PUMA_CONFIG_H

#define PUMA_CONFIG_H

// This must be <= the actual amount of PCI memory

#define PCI_MEM_LEN 512

// Motenc-Lite identification values (DON'T CHANGE)

#define VENDOR 0x10b5

#define DEVICE 0x3001

// Hardware Board ID (Jumper J7 on Motenc-Lite Board)

#define LOWER_BOARD_ID 0x00 // J1-J3 controlled by this Motenc card

#define UPPER_BOARD_ID 0x01 // J4-J6 controlled by this Motenc card

// Joints

#define J1 0

#define J2 1

#define J3 2

#define J4 3

#define J5 4

#define J6 5

// Max/min DAC values

#define DAC_MAX 4.90

#define DAC_MIN -1.00

// Voltage to turn off the PWM

#define PWM_OFF -1.00

// Motor torque constants (Unimation's numbers)

#define J1_K .260

#define J2_K .260

#define J3_K .260

#define J4_K .090

#define J5_K .090

#define J6_K .090

// Max/min current that can be delivered to a joint

#define J1_I_MIN 0.25

#define J1_I_MAX 2.0

#define J2_I_MIN 0.0

42

#define J2_I_MAX 0.0

#define J3_I_MIN 0.0

#define J3_I_MAX 0.0

#define J4_I_MIN 0.0

#define J4_I_MAX 0.0

#define J5_I_MIN 0.0

#define J5_I_MAX 0.0

#define J6_I_MIN 0.0

#define J6_I_MAX 0.0

// Encoder resolution by joint (degrees/bit)

#define J1_ENC_RES .0057557

#define J2_ENC_RES .00417408

#define J3_ENC_RES .0067098

#define J4_ENC_RES .0047361

#define J5_ENC_RES .00500625

#define J6_ENC_RES .00469177

// Joint rotational limits (degrees)

#define J1_ROT_LIM_DEG 320

#define J2_ROT_LIM_DEG 250

#define J3_ROT_LIM_DEG 270

#define J4_ROT_LIM_DEG 300

#define J5_ROT_LIM_DEG 200

#define J6_ROT_LIM_DEG 532

// Joint rotational limits (encoder counts)

#define J1_ROT_LIM_CNT 55597

#define J2_ROT_LIM_CNT 59893

#define J3_ROT_LIM_CNT 40240

#define J4_ROT_LIM_CNT 63343

#define J5_ROT_LIM_CNT 39950

#define J6_ROT_LIM_CNT 113390

// Potentiometer ranges (volts)

#define J1_POT_VMIN 0.00

#define J1_POT_VMAX 5.00

#define J2_POT_VMIN 0.00

#define J2_POT_VMAX 5.00

#define J3_POT_VMIN 0.00

#define J3_POT_VMAX 5.00

#define J4_POT_VMIN 0.00

#define J4_POT_VMAX 5.00

#define J5_POT_VMIN 1.88

#define J5_POT_VMAX 3.76

#define J6_POT_VMIN 0.00

#define J6_POT_VMAX 5.00

#endif

Puma.h
/*

 * Primary functions to interact with the Motenc-Lite

 * cards and the PUMA controller.

43

 *

 * puma.h

 *

 * Alex Grieve, 2014

 */

#ifndef PUMA_H

#define PUMA_H

#include "puma_config.h"

#include <stdlib.h>

#include <stdint.h>

#include <unistd.h>

#include <stdio.h>

#include <fcntl.h>

#include <stdlib.h>

#include <pci/pci.h>

#include <sys/io.h>

#include <sys/mman.h>

/***

 * Primary functions *

 ***/

/*

 * Finds and initializes Motenc-Lite cards for use.

 *

 * RETURN: 1 on successfull initialization, 0 otherwise

 */

uint8_t puma_init();

/*

 * Retrieves the unsigned encoder count from the Motenc-Lite

 * card for a specific joint.

 *

 * INPUT: joint Desired joint (J1 - J6)

 * RETURN: Unsigned encoder count, 0 if error occurs

 */

uint32_t read_encoder(uint8_t joint);

/*

 * Retrieves the voltage across a specific joint's potentiometer

 * using the Motenc-Lite ADC.

 *

 * INPUT: joint Desired joint (J1 - J6)

 * RETURN: Voltage across the potentiometer, 0 if error occurs

 */

float read_pot(uint8_t joint);

/*

 * Apply torque to a specific joint. This function uses the

 * following equation for torque:

 *

 * torque = k * I

 *

 * where k is the motor torque constant and I is the current

 * flowing through the motor.

 *

44

 * INPUT: joint Desired joint (J1 - J6)

 * torque Torque to apply

 * direction Desired motor direction (0 or 1)

 * RETURN: 1 on success, 0 otherwise

 */

uint8_t apply_torque(int joint, float torque, int direction);

/*

 * Writes a voltage value to the Motenc-Lite DAC for a specific

 * joint and motor direction.

 *

 * INPUT: joint Desired joint (J1 - J6)

 * voltage Voltage to write

 * direction Desired motor direction (0 or 1)

 * RETURN: 1 on successful write to DAC, 0 otherwise

 */

uint8_t write_dac(int joint, float voltage, int direction);

/*

 * Applies the brake to the PUMA joints.

 *

 * RETURN: 1 if successfully applied, 0 otherwise

 */

uint8_t brake_on();

/*

 * Releases the brake on the PUMA joints.

 *

 * RETURN: 1 if successfully released, 0 otherwise

 *

 */

uint8_t brake_off();

/*

 * Puts PUMA in a safe state by appying the brakes & setting all

 * DAC channels to 0.0 volts. Also clears encoder count registers

 * and powers down the ADC on the Motenc-Lite cards.

 *

 * RETURN: 1 on success, 0 otherwise

 */

uint8_t puma_close();

/***

 * Helper functions *

 * DON'T CALL THESE UNLESS YOU KNOW WHAT YOU ARE DOING *

 ***/

/*

 * Finds Motenc-Lite cards that are connected to the computer.

 * It specifically looks for TWO installed Motenc-Lite cards.

 *

 * RETURN: 1 if two Motenc-Lite cards are found, 0 otherwise

 */

uint8_t find_motenc_cards();

/*

 * Clears/resets the DAC by setting all channels to 0.0 volts.

45

 *

 * RETURN: 1 on success, 0 otherwise

 */

uint8_t clear_dac();

/*

 * Clears/resets the DAC. PWM circuits are switched off by writing

 * -1.0 volts to their DAC channels. The brake is applied, and

 * unused channels are written 0.0 volts.

 *

 * RETURN: 1 on success, 0 otherwise

 */

uint8_t clear_encoders();

/*

 * Initializes the Motenc-Lite ADC.

 *

 * RETURN: 1 on success, 0 otherwise

 */

uint8_t adc_on();

/*

 * Shuts off the ADC on the Motenc-Lite card.

 *

 * RETURN: 1 on success, 0 otherwise

 */

uint8_t adc_off();

/*

 * Converts a desired DAC voltage to the corresponding value of

 * the DAC transfer function. Transfer function is:

 * 0x0000 => +10 Volts

 * 0x1000 => 0 Volts

 * 0x1FFF => -10 Volts

 *

 * INPUT: voltage Desired DAC output pin voltage

 * RETURN: Proper value to write to the DAC

 */

uint32_t dac_conversion(float voltage);

#endif

Puma.c
/*

 * Primary functions to interact with the Motenc-Lite

 * cards and the PUMA controller.

 *

 * puma.h

 *

 * Alex Grieve, 2014

 */

#include "puma.h"

46

// Mmapped memory access to Motenc cards

uint32_t *motenc_lower = NULL;

uint32_t *motenc_upper = NULL;

/***

 * Public functions *

 ***/

/*

 * Finds and initializes Motenc-Lite cards for use.

 *

 * RETURN: 1 on successfull initialization, 0 otherwise

 */

uint8_t puma_init()

{

 // Mmap the Motenc cards, abort if there is an error

 if (!find_motenc_cards())

 return 0;

 int err = 1;

 // Clear DAC

 if(!clear_dac()) err = 0;;

 // Setup ADC

 if(!adc_on()) err = 0;

 // Clear encoder counters

 if(!clear_encoders()) err = 0;

 return err;

}

/*

 * Retrieves the unsigned encoder count from the Motenc-Lite

 * card for a specific joint.

 *

 * INPUT: joint Desired joint (J1 - J6)

 * RETURN: Unsigned encoder count, 0 if error occurs

 */

uint32_t read_encoder(uint8_t joint)

{

 if (motenc_lower == NULL || motenc_upper == NULL)

 return 0;

 // Encoder registers are at offset 0, 1, 2

 if (joint == J1 || joint == J2 || joint == J3)

 return *(motenc_lower + joint);

 else if (joint == J4 || joint == J5 || joint == J6)

 return *(motenc_upper + joint - 3);

 else

 return 0.0;

}

/*

 * Retrieves the voltage across a specific joint's potentiometer

 * using the Motenc-Lite ADC.

47

 *

 * INPUT: joint Desired joint (J1 - J6)

 * RETURN: Voltage across the potentiometer, 0 if error occurs

 */

float read_pot(uint8_t joint)

{

 if (motenc_lower == NULL || motenc_upper == NULL)

 return 0.0;

 uint32_t *mem;

 int16_t adc;

 float volts;

 int adc_joint;

 // Determine which card we need to use

 if (joint == J1 || joint == J2 || joint == J3) {

 mem = motenc_lower;

 adc_joint = joint;

 }

 else if (joint == J4 || joint == J5 || joint == J6) {

 adc_joint = joint - 3;

 mem = motenc_upper;

 }

 else

 return 0.0;

 // Write a 1 to register 40, starts a conversion

 *(mem+40) = 0x1;

 // Wait for conversion to finish

 while(((*(mem + 5)) >> 18) & 0x1) ;

 // Read the correct ADC value

 // ADC values are accessed by reading register 32 sequentially

 // All ADC values must be read (hence the temp variable)

 int i;

 uint16_t temp;

 for (i=0; i<3; ++i) {

 if (i == adc_joint)

 adc = *(mem+32);

 else

 temp = *(mem+32);

 }

 // Convert ADC to voltage

 volts = (float)adc * 10.0 / 16384.0;

 return volts;

}

/*

 * Apply torque to a specific joint. This function uses the

 * following equation for torque:

 *

 * torque = k * I

 *

 * where k is the motor torque constant and I is the current

 * flowing through the motor.

48

 *

 * INPUT: joint Desired joint (J1 - J6)

 * torque Torque to apply

 * direction Desired motor direction (0 or 1)

 * RETURN: 1 on success, 0 otherwise

 */

uint8_t apply_torque(int joint, float torque, int direction)

{

 if (motenc_lower == NULL || motenc_upper == NULL)

 return 0;

 uint8_t err = 1;

 float current;

 float voltage;

 switch (joint)

 {

 case J1:

 // Calculate the amount of current needed

 current = torque / J1_K;

 // Check current limitations

 if (current > J1_I_MAX) current = J1_I_MAX;

 else if (current < J1_I_MIN) current = J1_I_MIN;

 // Find the corresponding voltage value

 voltage = DAC_MAX / J1_I_MAX * current;

 // Write the voltage to the DAC

 err = write_dac(joint, voltage, direction);

 break;

 case J2:

 // Calculate the amount of current needed

 current = torque / J2_K;

 // Check current limitations

 if (current > J2_I_MAX) current = J2_I_MAX;

 else if (current < J2_I_MIN) current = J2_I_MIN;

 // Find the corresponding voltage value

 voltage = DAC_MAX / J2_I_MAX * current;

 // Write the voltage to the DAC

 err = write_dac(joint, voltage, direction);

 break;

 case J3:

 // Calculate the amount of current needed

 current = torque / J3_K;

 // Check current limitations

 if (current > J3_I_MAX) current = J3_I_MAX;

 else if (current < J3_I_MIN) current = J3_I_MIN;

 // Find the corresponding voltage value

 voltage = DAC_MAX / J3_I_MAX * current;

 // Write the voltage to the DAC

 err = write_dac(joint, voltage, direction);

 break;

 case J4:

 // Calculate the amount of current needed

 current = torque / J4_K;

 // Check current limitations

49

 if (current > J4_I_MAX) current = J4_I_MAX;

 else if (current < J4_I_MIN) current = J4_I_MIN;

 // Find the corresponding voltage value

 voltage = DAC_MAX / J4_I_MAX * current;

 // Write the voltage to the DAC

 err = write_dac(joint, voltage, direction);

 break;

 case J5:

 // Calculate the amount of current needed

 current = torque / J5_K;

 // Check current limitations

 if (current > J5_I_MAX) current = J5_I_MAX;

 else if (current < J5_I_MIN) current = J5_I_MIN;

 // Find the corresponding voltage value

 voltage = DAC_MAX / J5_I_MAX * current;

 // Write the voltage to the DAC

 err = write_dac(joint, voltage, direction);

 break;

 case J6:

 // Calculate the amount of current needed

 current = torque / J6_K;

 // Check current limitations

 if (current > J6_I_MAX) current = J6_I_MAX;

 else if (current < J6_I_MIN) current = J6_I_MIN;

 // Find the corresponding voltage value

 voltage = DAC_MAX / J6_I_MAX * current;

 // Write the voltage to the DAC

 err = write_dac(joint, voltage, direction);

 break;

 default:

 err = 0;

 break;

 }

 return err;

}

/*

 * Writes a voltage value to the Motenc-Lite DAC for a specific

 * joint and motor direction.

 *

 * INPUT: joint Desired joint (J1 - J6)

 * voltage Voltage to write

 * direction Desired motor direction (0 or 1)

 * RETURN: 1 on successful write to DAC, 0 otherwise

 */

uint8_t write_dac(int joint, float voltage, int direction)

{

 if (motenc_lower == NULL || motenc_upper == NULL)

 return 0;

 // Make sure value is within the acceptable range

 if (voltage > DAC_MAX)

 voltage = DAC_MAX;

50

 else if (voltage < DAC_MIN)

 voltage = DAC_MIN;

 // Write to the DAC

 switch (joint)

 {

 case J1:

 if (direction == 0) {

 *(motenc_lower + 24 + 1) = dac_conversion(PWM_OFF);

 *(motenc_lower + 24) = dac_conversion(voltage);

 }

 else {

 *(motenc_lower + 24) = dac_conversion(PWM_OFF);

 *(motenc_lower + 24 + 1) = dac_conversion(voltage);

 }

 break;

 case J2:

 if (direction == 0) {

 *(motenc_lower + 26 + 1) = dac_conversion(PWM_OFF);

 *(motenc_lower + 26) = dac_conversion(voltage);

 }

 else {

 *(motenc_lower + 26) = dac_conversion(PWM_OFF);

 *(motenc_lower + 26 + 1) = dac_conversion(voltage);

 }

 break;

 case J3:

 if (direction == 0) {

 *(motenc_lower + 28 + 1) = dac_conversion(PWM_OFF);

 *(motenc_lower + 28) = dac_conversion(voltage);

 }

 else {

 *(motenc_lower + 28) = dac_conversion(PWM_OFF);

 *(motenc_lower + 28 + 1) = dac_conversion(voltage);

 }

 break;

 case J4:

 if (direction == 0) {

 *(motenc_upper + 24 + 1) = dac_conversion(PWM_OFF);

 *(motenc_upper + 24) = dac_conversion(voltage);

 }

 else {

 *(motenc_upper + 24) = dac_conversion(PWM_OFF);

 *(motenc_upper + 24 + 1) = dac_conversion(voltage);

 }

 break;

 case J5:

 if (direction == 0) {

 *(motenc_upper + 26 + 1) = dac_conversion(PWM_OFF);

 *(motenc_upper + 26) = dac_conversion(voltage);

 }

 else {

 *(motenc_upper + 26) = dac_conversion(PWM_OFF);

51

 *(motenc_upper + 26 + 1) = dac_conversion(voltage);

 }

 break;

 case J6:

 if (direction == 0) {

 *(motenc_upper + 28 + 1) = dac_conversion(PWM_OFF);

 *(motenc_upper + 28) = dac_conversion(voltage);

 }

 else {

 *(motenc_upper + 28) = dac_conversion(PWM_OFF);

 *(motenc_upper + 28 + 1) = dac_conversion(voltage);

 }

 break;

 default:

 return 0;

 }

 return 1;

}

/*

 * Applies the brake to the PUMA joints.

 *

 * RETURN: 1 if successfully applied, 0 otherwise

 */

uint8_t brake_on()

{

 if (motenc_lower == NULL || motenc_upper == NULL)

 return 0;

 printf("Applying brake...");

 // Brake control is on DAC6 on card that controls lower joints

 if (motenc_lower != NULL) {

 *(motenc_lower + 24 + 6) = dac_conversion(0.0);

 printf("Done.\n\n");

 return 1;

 }

 else {

 printf("Failed.\n\n");

 return 0;

 }

}

/*

 * Releases the brake on the PUMA joints.

 *

 * RETURN: 1 if successfully released, 0 otherwise

 *

 */

uint8_t brake_off()

{

 if (motenc_lower == NULL || motenc_upper == NULL)

 return 0;

52

 printf("Releasing brake...");

 // Brake control is on DAC6 on card that controls lower joints

 if (motenc_lower != NULL) {

 *(motenc_lower + 24 + 6) = dac_conversion(5.0);

 printf("Done.\n\n");

 return 1;

 }

 else {

 printf("Failed.\n\n");

 return 0;

 }

}

/*

 * Puts PUMA in a safe state by appying the brakes & setting all

 * DAC channels to 0.0 volts. Also clears encoder count registers

 * and powers down the ADC on the Motenc-Lite cards.

 *

 * RETURN: 1 on success, 0 otherwise

 */

uint8_t puma_close()

{

 uint8_t err = 1;

 // Put the brake on

 if(!brake_on()) err = 0;

 // Shut off all PWMs by clearing the DAC

 if(!clear_dac()) err = 0;

 // Clear encoder count registers

 if(!clear_encoders()) err = 0;

 // Power down the ADC

 if(!adc_off()) err = 0;

 return err;

}

/***

 * Private functions *

 * DON'T CALL THESE UNLESS YOU KNOW WHAT YOU ARE DOING *

 ***/

/*

 * Finds Motenc-Lite cards that are connected to the computer.

 * It specifically looks for TWO installed Motenc-Lite cards.

 *

 * RETURN: 1 if two Motenc-Lite cards are found, 0 otherwise

 */

uint8_t find_motenc_cards()

{

 printf("Searching for MOTENC-Lite cards...\n");

 // Check that we have access to /dev/mem

 if (iopl(3))

 {

53

 fprintf(stderr, "Cannot access /dev/mem. Try running as root.");

 return 0;

 }

 // File descriptor for /dev/mem

 int fd = open("/dev/mem", O_RDWR);

 if (fd == 0)

 {

 fprintf(stderr, "Could not open /dev/mem.");

 return 0;

 }

 // Struct to access PCI devices

 struct pci_access *pci_acc;

 // Struct for an individual PCI device

 struct pci_dev *pci_dev = NULL;

 // PCI region addresses

 uint32_t bar_lower[3];

 uint32_t bar_upper[3];

 // Base and offset for mmap

 uint32_t base_lower, offset_lower;

 uint32_t base_upper, offset_upper;

 // Initialize pci_access struct

 pci_acc = pci_alloc();

 // Initialize PCI library

 pci_init(pci_acc);

 // Build a list of devices on the PCI bus

 pci_scan_bus(pci_acc);

 // Search for Motenc-Lite cards

 pci_dev = pci_acc->devices;

 while (pci_dev != NULL)

 {

 if ((pci_dev->vendor_id == VENDOR) && (pci_dev->device_id == DEVICE)

) {

 // Found a Motenc card

 if (motenc_lower == NULL)

 {

 // Do some PCI addressing magic

 bar_lower[0] = pci_dev->base_addr[0] &

PCI_BASE_ADDRESS_MEM_MASK;

 bar_lower[1] = pci_dev->base_addr[1] &

PCI_BASE_ADDRESS_IO_MASK;

 bar_lower[2] = pci_dev->base_addr[2] &

PCI_BASE_ADDRESS_MEM_MASK;

 base_lower = bar_lower[2] & 0xfffff000;

 offset_lower = bar_lower[2] & 0xfff;

 motenc_lower = mmap(0, PCI_MEM_LEN + offset_lower,

PROT_READ|PROT_WRITE, MAP_SHARED, fd, base_lower);

 if (motenc_lower == MAP_FAILED)

 {

 fprintf(stderr, "mmap() failed.");

 return 0;

 }

54

 motenc_lower = motenc_lower + (offset_lower/4);

 // Motenc card has been mapped

 }

 else if (motenc_upper == NULL)

 {

 // Do some PCI addressing magic

 bar_upper[0] = pci_dev->base_addr[0] &

PCI_BASE_ADDRESS_MEM_MASK;

 bar_upper[1] = pci_dev->base_addr[1] &

PCI_BASE_ADDRESS_IO_MASK;

 bar_upper[2] = pci_dev->base_addr[2] &

PCI_BASE_ADDRESS_MEM_MASK;

 base_upper = bar_upper[2] & 0xfffff000;

 offset_upper = bar_upper[2] & 0xfff;

 motenc_upper = mmap(0, PCI_MEM_LEN + offset_upper,

PROT_READ|PROT_WRITE, MAP_SHARED, fd, base_upper);

 if (motenc_upper == MAP_FAILED)

 {

 fprintf(stderr, "mmap() failed.");

 return 0;

 }

 motenc_upper = motenc_upper + (offset_upper/4);

 // Motenc card has been mapped

 }

 else

 {

 fprintf(stderr, "Found more than 2 Motenc-Lite cards,

aborting.");

 return 0;

 }

 } // end Motenc card assignment

 // Move onto the next PCI device

 pci_dev = pci_dev->next;

 } // end while

 // Make sure we found the 2 Motenc Cards

 if ((motenc_lower == NULL) || (motenc_upper == NULL))

 {

 fprintf(stderr, "Did not find 2 Motenc-Lite cards, aborting.");

 return 0;

 }

 // Make sure each pointer is referencing the right Motenc-Lite card

 // Hardware Board ID is at register 5, bits 16 and 17

 uint8_t lower_id = ((*(motenc_lower+5)) >> 16) & 0x3;

 uint8_t upper_id = ((*(motenc_upper+5)) >> 16) & 0x3;

 if (lower_id != LOWER_BOARD_ID || upper_id != UPPER_BOARD_ID)

 {

 // Swap the pointers to the Motenc cards

 uint32_t *tmp = motenc_lower;

 motenc_lower = motenc_upper;

 motenc_upper = tmp;

 }

55

 printf("-->Found MOTENC-Lite w/ ID: %d\n", lower_id);

 printf("-->Found MOTENC-Lite w/ ID: %d\n", upper_id);

 printf("Done.\n\n");

 return 1;

}

/*

 * Clears/resets the DAC. PWM circuits are switched off by writing

 * -1.0 volts to their DAC channels. The brake is applied, and

 * unused channels are written 0.0 volts.

 *

 * RETURN: 1 on success, 0 otherwise

 */

uint8_t clear_dac()

{

 if (motenc_lower == NULL || motenc_upper == NULL)

 return 0;

 printf("Clearing DAC...");

 // Put the brake on for safety

 *(motenc_lower + 24 + 6) = dac_conversion(0.0); // DAC6 - Brake

 // Reset/turn off the lower joints

 *(motenc_lower+24) = dac_conversion(PWM_OFF); // DAC0 - J1 PWM+

 *(motenc_lower+24+1) = dac_conversion(PWM_OFF); // DAC1 - J1 PWM-

 *(motenc_lower+24+2) = dac_conversion(PWM_OFF); // DAC2 - J2 PWM+

 *(motenc_lower+24+3) = dac_conversion(PWM_OFF); // DAC3 - J2 PWM-

 *(motenc_lower+24+4) = dac_conversion(PWM_OFF); // DAC4 - J3 PWM+

 *(motenc_lower+24+5) = dac_conversion(PWM_OFF); // DAC5 - J3 PWM-

 *(motenc_lower+24+7) = dac_conversion(0.0); // DAC7 - Not used

 // Reset/turn off the upper joints

 *(motenc_upper+24) = dac_conversion(PWM_OFF); // DAC0 - J4 PWM+

 *(motenc_upper+24+1) = dac_conversion(PWM_OFF); // DAC1 - J4 PWM-

 *(motenc_upper+24+2) = dac_conversion(PWM_OFF); // DAC2 - J5 PWM+

 *(motenc_upper+24+3) = dac_conversion(PWM_OFF); // DAC3 - J5 PWM-

 *(motenc_upper+24+4) = dac_conversion(PWM_OFF); // DAC4 - J6 PWM+

 *(motenc_upper+24+5) = dac_conversion(PWM_OFF); // DAC5 - J6 PWM-

 *(motenc_upper+24+6) = dac_conversion(0.0); // DAC6 - Not used

 *(motenc_upper+24+7) = dac_conversion(0.0); // DAC7 - Not used

 printf("Done.\n\n");

 return 1;

}

/*

 * Clears all encoder count registers on the Motenc-Lite card.

 *

 * RETURN: 1 on success, 0 otherwise

 */

uint8_t clear_encoders()

{

 if (motenc_lower == NULL || motenc_upper == NULL)

 return 0;

56

 printf("Clearing encoders...");

 *(motenc_lower+5) = 0xf;

 *(motenc_upper+5) = 0xf;

 printf("Done.\n\n");

 return 1;

}

/*

 * Initializes the Motenc-Lite ADC.

 *

 * RETURN: 1 on success, 0 otherwise

 */

uint8_t adc_on()

{

 if (motenc_lower == NULL || motenc_upper == NULL)

 return 0;

 printf("Initializing ADC...");

 // Set ADC to sample channels 0,1,2

 *(motenc_lower+32) = 2;

 *(motenc_upper+32) = 2;

 // Clear the ADC_DONE bit

 int temp;

 temp = ((*(motenc_lower + 5)) >> 18) & 0x1;

 temp = ((*(motenc_upper + 5)) >> 18) & 0x1;

 printf("Done.\n\n");

}

/*

 * Shuts off the ADC on the Motenc-Lite card.

 *

 * RETURN: 1 on success, 0 otherwise

 */

uint8_t adc_off()

{

 if (motenc_lower == NULL || motenc_upper == NULL)

 return 0;

 printf("Powering down ADC...");

 *(motenc_lower+32) = 8;

 *(motenc_upper+32) = 8;

 printf("Done.\n\n");

 return 1;

}

/*

 * Converts a desired DAC voltage to the corresponding value of

 * the DAC transfer function. Transfer function is:

57

 * 0x0000 => +10 Volts

 * 0x1000 => 0 Volts

 * 0x1FFF => -10 Volts

 *

 * INPUT: voltage Desired DAC output pin voltage

 * RETURN: Proper value to write to the DAC

 */

uint32_t dac_conversion(float voltage)

{

 long dac_value = (int)((10.0 - voltage) / 20.0 * 0x1FFF);

 return (uint32_t)dac_value;

}

Skel.c
/*

 * Skeleton file for PUMA programs. User should always

 * use this template as a starting point.

 *

 * skel.c

 *

 * Alex Grieve, 2014

 */

#include "puma.h"

#include <signal.h>

void int_handler(int signal);

int main(void)

{

 // DON'T REMOVE THESE LINES - THIS ENSURES THE BRAKE

 // IS TURNED ON IF THE PROGRAM STOPS PREMATURELY

 signal(SIGQUIT, int_handler);

 signal(SIGINT, int_handler);

 // Initialize the PUMA and Motenc-Lite cards

 if(!puma_init()) {

 printf("PUMA initialization failed.\n");

 return 1;

 }

 /*****************************/

 /* Program goes here */

 /*****************************/

 // Shut down the PUMA and Motenc-Lite cards

 if(!puma_close()) {

58

 printf("WARNING: Could not properly shut down the PUMA - it may

remain in an unsafe state.\n");

 return 1;

 }

 return 0;

}

// DON"T REMOVE THIS FUNCTION

void int_handler(int signal)

{

 brake_on();

 puma_close();

 exit(0);

}

59

Appendix VI: Enclosure Drawings

This page intentionally left blank.

60

Front Panel

61

Rear Panel

62

Left Panel

63

Right Panel

64

DIN Rail View

65

Front Panel Hole Locations

66

Back Panel Hole Locations

67

Left Panel Hole Locations

68

Right Panel Hole Locations

69

Appendix VII: Electrical Schematics

This page intentionally left blank.

70

Cover Sheet

71

BOM

72

Excelsys

73

Meanwell

74

Control Relays

75

Main Board

76

MOTENC 1 and 2

77

J1 and J2 PCBs

78

J3 and J4 PCBs

79

J5 and J6 PCBs

80

EM Brake

81

Harness Adapter

82

LED Display

