# Powering the PUMA Dec14-08

Dr. Greg Luecke – Client/Advisor Matt Bogenschultz Alex Grieve Nhat Pham Seth Taylor Zeyu Zhang

# Background

- PUMA robot
  - Lightweight
  - 6 moveable joints
  - Precise, repeatable movement
- Used in research
  - Dr. Luecke
  - Haptics & feedback
  - Kinematics



# Problem

#### Original controller

- Does not provide torque control
- Damaged beyond reasonable repair
- Client needs a new controller
  - Torque control for all 6 joints
  - Control through C code
  - Utilize existing H-bridge design



# The Solution

- Over 400 wire connections, 20 PCBs
- 2500 lines of code
- All packed into a 2.3 ft<sup>3</sup> enclosure





# **Torque Control**

- $\tau = k_t * I$ 
  - $k_t = motor torque constant$
  - I = current through motor
- Can control average current with PWM signal
  - So, torque can be controlled







# H-Bridge

- Allows bi-directional rotation of the motor
  - H-Bridge allows a path for current across the motor
- Back EMF's
  - Caused voltage polarity changes, solved with diodes







### **PWM** Control

- PWM signals the H-Bridge to open and close
  - Duty cycle proportional to input



### PWM

|                                       |                                                  |                                         | V                                       |                                 |               |                                       |        |
|---------------------------------------|--------------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------|---------------|---------------------------------------|--------|
|                                       |                                                  |                                         | • • • • • • • •                         |                                 |               |                                       |        |
|                                       |                                                  | · · · — — — — — — — — — — — — — — — — — |                                         |                                 |               |                                       |        |
|                                       |                                                  |                                         |                                         |                                 |               |                                       |        |
| ····>100                              | C Pot                                            |                                         |                                         |                                 |               |                                       |        |
| ····>/***                             | 7 7 <del>7 7</del> 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |                                         | · - · · · · · ·                         |                                 |               |                                       |        |
|                                       |                                                  | $\cdots$                                | · • • • • • • • • • • • • • • • • • • • |                                 |               |                                       |        |
|                                       | · • · · · ·                                      | · · · · //                              |                                         |                                 | 110           |                                       |        |
|                                       |                                                  | · · · · <· T                            | ·>N · · · ·                             |                                 | 02            |                                       |        |
|                                       | ·   · · · ·   · ·U1                              | 🔊                                       | × 🛣 · ·   ·                             | 1                               |               |                                       |        |
|                                       |                                                  | <b>1</b> · · · · Y                      | · 🔂 · ·   ·                             | VCC.                            |               |                                       |        |
|                                       |                                                  |                                         |                                         |                                 |               |                                       |        |
|                                       |                                                  |                                         | 🖵                                       | RST                             | TUC           |                                       |        |
| L <b>RZ</b> .                         | RST OUT                                          |                                         |                                         |                                 |               |                                       |        |
|                                       |                                                  | · · ·   📥                               |                                         | DIS                             |               | . PWM C                               | output |
|                                       | DIS                                              |                                         |                                         |                                 |               |                                       |        |
|                                       |                                                  |                                         |                                         |                                 |               |                                       |        |
|                                       |                                                  |                                         |                                         | THE                             | . 61          |                                       |        |
| 1::::::f:::                           |                                                  | ::: <b> </b> ♠                          |                                         | THR                             | 55            |                                       |        |
| <b>.</b>                              | THR                                              |                                         |                                         | THR                             | 550           |                                       |        |
| · · · · · · · · · · · · · · · · · · · |                                                  |                                         |                                         | THR<br>TRI                      | 55 <b>C</b> N |                                       |        |
|                                       |                                                  |                                         | · · · · · · · ·                         | THR<br>TRI                      | 555CN         | · · · · · · · · · · · · · · · · · · · |        |
|                                       |                                                  |                                         | · · · · · · · · ·                       | THR<br>TRI<br>CON               | 555CN         |                                       |        |
|                                       | THR 555<br>TRI CON                               |                                         | R3                                      | THR<br>TRI<br>CON               | 55CN          |                                       |        |
|                                       | THR 5550<br>TRI 000                              |                                         | R3                                      | THR                             | 555CN         |                                       |        |
| C1                                    | THR 555<br>TRI 555<br>CON CON CON                |                                         | R3<br>>100Ω                             | THR<br>TRI<br>GON<br>GND        | 555CN         |                                       |        |
| C1                                    | THR 555<br>TRI C2                                |                                         | R3<br>≶100Ω                             | THR<br>TRI<br>GON<br>GND        | 555CN         |                                       |        |
| C1                                    |                                                  | C3                                      | R3<br>≶100Ω                             | THR<br>TRI<br>CON<br>GND        | 555CN         |                                       |        |
| C1<br>100nF == =                      | C2 GND 100nF                                     |                                         | R3<br>≶100Ω                             | THR .<br>TRI .<br>GON .<br>GND. | 555CN         |                                       |        |
| C1<br>100nF == =                      | C2 GND.                                          | C3<br>(00nF                             | R3<br>≶100Ω                             | THR .<br>TRI .<br>GON .<br>GND. | 555CN         |                                       |        |
| C1<br>100nF =                         | C2 GND                                           | .C3<br>(00nF                            | R3<br>≶100Ω                             | THR                             | 555CN         |                                       |        |
| C1<br>100nF =                         |                                                  | .C3<br>(00nF                            | R3<br>≶100Ω                             | THR<br>TRI<br>CON<br>GND        | 555CN         |                                       |        |
| C1<br>100nF ======                    | C2 GND                                           | .C3<br>(00nF                            | R3<br>≥100Ω<br>— Input                  | THR                             | 555CN         |                                       |        |
| C1<br>100nF == =                      | C2 GND.                                          | C3<br>(00nF                             | R3<br>≥100Ω<br>— Input                  | THR                             | 555CN         |                                       |        |
| C1<br>100nF == =                      | C2 GND.                                          | C3<br>(00nF                             | R3<br>≶100Ω<br>— Input                  | THR<br>TRI<br>GON<br>GND        | 555CN         |                                       |        |
| C1<br>100nF =                         |                                                  | .C3<br>(00nF                            | R3<br>≶100Ω<br>— Input                  | THR<br>TRI<br>GON<br>GND        | 555CN         |                                       |        |



### Motenc-Lite

- Industrial grade, 4-axis motion control and data acquisition card
- Provides interface to hardware/circuits
  - PWM, H-Bridge, Motors, Encoders, Pots
- Uses PCI interface
  - Controllable through code
  - Meets functional requirement
- 8 Channel DAC, ± 10 V
  - Use analog outputs to control PWM circuit
- Built-in hardware for encoders and potentiometers
  - Encoders = relative position
  - Pots = absolute position

# C Code

#### Collection of functions (library)

- Search for and memory map the MOTENC cards
- Abstracts away messy details of writing DAC, reading encoders/pots, etc.
- Error checking prevents dangerous states

#### Safe shutdown

- Signal catching unexpected crash/shutdown
- Turns off all outputs, applies brake
- Skeleton file
- Configuration file
  - Individual tuning of different PUMAs



# **Power Delivery**

- Six motors in parallel to power supply
  - Sharing current limits available power to joints
- Dedicated power modules
  - Isolates each motor
- Auxiliary circuit power
  - For remaining active devices
  - Breakers and relays protect controller from spikes/surges





# Safety Circuit

- Provides protection for PUMA and operators
  - Emergency stop
  - Motor on/off
  - Surge protection
  - Electromechanical brake indicator
    - Indicates PUMA in motion





### Electromagnetic Brake

- Locks lower three joints for safety
- Half H-Bridge w/ 100% duty
- Cruical that brake is applied:
  - Program crashes
  - E-Stop pressed



### Main Board

- > 100 connections
- Bypass capacitors
  - Smooth voltage across motors





# Test Plan

- Ensure that each subsystem works as designed
  - Test circuits individually
- Ensure that subsystems work in circuit
  - Combine circuits one at a time
- Ensure code works with robot
  - Full system test

# Demo Video

http://dec1408.ece.iastate.edu/media/videos/demo.mp4

# Enclosure

- Protect our PCBs and power supplies
- Need fans for air-flow cooling
  - H-Bridge produces lots of heat
- Chassis ground isolations



# **Additional Slides**

### Status Sub-circuit

- Electronic components fail over time
- Sub-circuit indicates which component has failed
  - Opto-isolators sense damaged components
  - Logic gates and LEDs provide visual cues
- Need to account for current transfer ratio (CTR)
  - Individually tuned RC circuit for each opto-isolator

