

Dec14-08 Powering the

PUMA

Project Plan

Team Members:

Matt Bogenschultz

Alex Grieve

Nhat Pham

Zeyu Zhang

Client:
Dr. Greg Luecke

Advisor:
Dr. Greg Luecke

Revision History

Version Description Date

1.0 Initial project plan written February 19, 2014

1.1

Updated to reflect new requirements – must use existing

DAQ board provided by client, and must design a PID

controller

March 14, 2014

1.2
Revised system block diagram, added testing plan and Gantt

chart for project schedule
April 2, 2014

Table of Contents

Background ... 1

Problem Statement.. 1

Concept Sketch .. 1

System Block Diagram ... 2

System Description.. 2

Operating Environment ... 3

User Interface Description ... 3

Functional Requirements ... 4

Non-Functional Requirements ... 4

Deliverables ... 5

Work Breakdown .. 5

Resource Requirements .. 5

Testing Plan ... 5

Project Schedule .. 7

1

Background

The Unimation Programmable Universal Machine for Assembly (PUMA) is an industrial robot

arm with six degrees of freedom. It has a main control unit that sends commands to the PUMA

arm and samples feedback from the PUMA arm’s sensors. The control unit also supports two

mechanisms to program the PUMA arm. The first is a teach pendant that is used to manipulate

the six joints and record their positions. The second is a terminal interface where the PUMA arm

can be programmed in a language called VAL. The control unit has a floppy disk drive for

storing and loading programs.

Problem Statement

Our client, Dr. Greg Luecke, has acquired two PUMA 500 robot arms, but the controllers have

been damaged and/or lost. Our team objective is to develop a control system that will interact

with the PUMA robot arm, which will replace the original controllers.

Concept Sketch

2

System Block Diagram

System Description

Linux Computer
The Linux Computer will have a C library that will allow for communication between the

controller and custom application programs. The C library will serve as a basic API, allowing

application programs to easily interact with the PUMA robot arm.

MOTENC-Lite Data Acquisition Board (DAQ)
The MOTENC-Lite boards will be connected to the Linux computer via PCI slots (one PCI slot

per board.) The MOTENC-Lite boards will be accessed through C code and will output desired

positions for each PUMA robot arm. Additionally, we will leverage the MOTENC-Lite boards

quadrature encoder support to get the current position of each arm and output it for the PID

controller. Note that a single MOTENC-Lite board only supports four degrees of freedom, while

the PUMA robot has six degrees of freedom, hence the need for two boards.

3

PID Controller
There will be a PID Controller for each joint of the PUMA arm and they will be implemented

digitally through the Linux computer and MOTENC-Lite boards. By taking in two input values

from the DAQ associated with a desired and current angle value of each joint, it will output a

given torque value. These circuits may differ based on the power demands or the degrees of

freedom each joint is able to move. Also, within this block we will need to know the certain

inertial values of each joint, so that we can allot the correct torque value to its given motor.

H-Bridges
The H-Bridge controls the direction of the DC motor. They switch current from the power

amplifier in one of two directions at a time, depending on the input from the PID control circuit.

We will also implement a logic circuit to avoid a short circuit if both sides of the H-bridge are

being trigger by code bugs, machine errors, etc.

Power Amplifier
The power amplifier provides power to the six DC motors. Three joints only require 12 volts,

and the other three require 40 volts. The three 40 volt motors also have brakes that must be

unlocked with 24 volt input. Current requirements will be calculated based on the needs for each

H-bridge and arm motor, and will be verified with measurements.

PUMA Robot Arm

The PUMA robot arm has six movable joints. Each joint has a DC motor and a quadrature

encoder attached to its shaft. As the DC motor is energized, the encoder rotates, creating pulse

trains. These pulse trains are used to indicate the current position, speed, and direction of rotation

of a specific joint. Each joint on the arm has some inertial value associated with how hard it will

be to move that given joint. These values will need to be taken into account when deciding how

much torque a given joint will need to move it.

Operating Environment

Once operational, the PUMA robot arm will be used in the VRAC (Virtual Reality Applications

Center) and the Laboratory for Advanced Robotics and Computer Control (LARRC) for

research. We don’t anticipate any extreme conditions that will affect our design plan.

User Interface Description

The user interface will not have a GUI. Instead, we plan to provide a C library of functions to

quickly build custom programs that control the PUMA robot for different research applications.

The C library will be designed to be used in a Linux-based environment.

4

Functional Requirements

1. Six operational joints
 All six joints of the PUMA robot arm will be operational, and their movement

will be controlled by the user.

2. User interface through C code
 The PUMA robot arm will be controlled by making specific C function calls.

This will allow the user to write custom programs that control the PUMA

robot arm.

3. Use H-Bridge design
 The client, Dr. Luecke, already has an existing H-Bridge design that is very

robust. He would like it to be refined and utilized in the controller. We will

add a logic circuit to the existing H-bridge design that will prevent short

circuits.

4. PID Controller
 We will need to design a PID controller that is operational for six joints. We

will implement a proportional response to the current angle and desired angle

of each joint. If we wish to have a faster or better loop performance, we can

include integral and/or derivative gains.

Non-Functional Requirements

1. Professional Quality
 Our client would like the controller to look professional. Its circuits should be

fabricated on PCBs, and the controller’s inputs and outputs should be clearly

labeled.

2. Ease of Use
 The C library of functions will be easy to use, allowing for rapid development

of custom applications for the PUMA robot arm.

3. Performance
 There will be no noticeable lag from the time a command is given to when the

PUMA robot arm moves. The output degree of the controller should be

accurate with respect to the input command given for each joint.

5

Deliverables

Our client expects a controller for the PUMA robot arm, and a C library that will interface with

the controller.

Work Breakdown

Alex will be handling the DAQ configuration and creating the C library to interface with the

DAQ. Matt, Nhat, and Zeyu will work together to refine the H-Bridge design, PID controller,

select a power amplifier, and map the PUMA robot arm wiring.

Resource Requirements

In order to accomplish this project, we will need the following resources:
1. A PCB fabrication company to fabricate our H-bridge circuit design onto a single

PCB.
2. Electronic components to build an H-bridge prototype and other test circuits.
3. A Linux computer to test our C library and the control system.
4. MOTENC-Lite boards and corresponding software to develop and test the custom

hardware design.
5. Once the PCBs are fabricated, we will need soldering equipment to assemble our

circuit designs.
6. Electrical engineering test equipment such as a multi-meter, oscilloscope, function

generator, and testing cables. This equipment is vital to ensure that our design meets

the functional requirements.
7. Mechanical engineer(s) to build an enclosure for our control circuits. They also could

perform maintenance on the PUMA robot arms.

Testing Plan

MOTENC-Lite DAQ
We will verify that the MOTENC-Lite boards are fully functional by utilizing test code provided

by the manufacturer. The test code allows the encoder values to be read and reset, values to be

written to the DAC, write to output registers, and read from input registers. This code will also

serve as a starting point for building the C library.

C library
To test the C library, we will write small programs that call the C library functions we created.

To verify that the library functions are operating correctly, we will use the gcc debugger to check

proper variable values and function return values. If a library function call activates or

6

deactivates a pin or pins on the MOTENC-Lite boards, we will verify this behavior by

connecting an oscilloscope to the affected MOTENC-Lite board pin(s).

PID Controller
The PID controller will be implemented in software. Thus, testing the PID controller will involve

issuing movement commands to the PUMA robot arm and observing the output movement. Each

of the PID controllers will have the same general form, but will differ given that each joint has a

different inertia. We will tune each controller by changing the proportional, differential, or

integral gain until the PUMA arm reaches the desired position with minimal overshoot.

H-Bridge
We will add a logic circuit that prevents both sides of the H-bridge from being trigger at the

same time, which could potentially burn out the MOSFETS and short the PUMA robot arm

motors. To test the logic circuit, we will apply different input and enable voltages, and verify that

only one side of the H-bridge gets activated. To test the H-bridge circuit, we will trigger one side

of the bridge and check for continuity, heat dissipation, and polarity. Once the entire H-bridge

circuit successfully controls the motor’s direction without any error, we will begin the next step

of fabrication.

System Integration
Once all components are tested and are working individually, we can begin hooking components

together. We will start with the MOTENC-Lite boards and C library and iteratively add a PID

controller and verify that it can be controlled correctly by the C code and MOTENC-Lite boards.

When all the PID controllers have been integrated with the C library and MOTENC-Lite boards,

we will iteratively add an H-bridge and verify that it can be controlled correctly by the C code,

MOTENC-Lite boards, and PID controllers. When all H-bridges have been successfully

integrated, we can then connect our controller to the PUMA robot and verify that we can

correctly control the robot through C code. We will need to make sure that the desired angle

input to the C code results in the affected joint moving to the desired angle. If the output angle

doesn’t match the input angle, we will need to tune the PID controllers to match the two angles.

7

Project Schedule

